Exam 38: Particles Behaving As Waves
Exam 1: Units, Physical Quantities, and Vectors107 Questions
Exam 2: Motion Along a Straight Line59 Questions
Exam 3: Motion in Two or Three Dimensions50 Questions
Exam 4: Newtons Laws of Motion44 Questions
Exam 5: Applying Newtons Laws95 Questions
Exam 6: Work and Kinetic Energy54 Questions
Exam 7: Potential Energy and Energy Conservation55 Questions
Exam 8: Momentum, Impulse, and Collisions50 Questions
Exam 9: Rotation of Rigid Bodies26 Questions
Exam 10: Equilibrium and Elasticity50 Questions
Exam 11: Fluid Mechanics50 Questions
Exam 12: Gravitation50 Questions
Exam 13: Periodic Motion50 Questions
Exam 14: Mechanical Waves44 Questions
Exam 15: Sound and Hearing66 Questions
Exam 16: Temperature and Heat63 Questions
Exam 17: Thermal Properties of Matter58 Questions
Exam 18: The First Law of Thermodynamics52 Questions
Exam 19: The Second Law of Thermodynamics50 Questions
Exam 20: Electric Charge and Electric Field58 Questions
Exam 21: Gausss Law41 Questions
Exam 22: Electric Potential55 Questions
Exam 23: Capacitance and Dielectrics52 Questions
Exam 24: Current, Resistance, and Electromotive Force50 Questions
Exam 25: Direct-Current Circuits53 Questions
Exam 26: Magnetic Field and Magnetic Forces36 Questions
Exam 27: Sources of Magnetic Field51 Questions
Exam 28: Electromagnetic Induction39 Questions
Exam 29: Inductance26 Questions
Exam 30: Alternating Current49 Questions
Exam 31: Electromagnetic Waves47 Questions
Exam 32: The Nature and Propagation of Light28 Questions
Exam 33: Geometric Optics81 Questions
Exam 34: Interference33 Questions
Exam 35: Diffraction49 Questions
Exam 36: Relativity51 Questions
Exam 37: Photons: Light Waves Behaving As Particles38 Questions
Exam 38: Particles Behaving As Waves52 Questions
Exam 39: Quantum Mechanics40 Questions
Exam 40: Atomic Structure41 Questions
Exam 41: Molecules and Condensed Matter31 Questions
Exam 42: Nuclear Physics89 Questions
Exam 43: Particle Physics and Cosmology44 Questions
Select questions type
What is the wavelength of peak emission for a black body at 37°C? (c = 3.0 × 108 m/s, Wien displacement law constant is 2.9 × 10-3 m ∙ K, σ = 5.67 × 10-8 W/m2 ∙ K4)
(Multiple Choice)
4.8/5
(32)
A hydrogen atom is in its n = 2 excited state when its electron absorbs a photon of energy 8.5 eV. What is the energy of the resulting free electron? The lowest level energy state of hydrogen is -13.6 eV. (h = 6.626 × 10-34 J ∙ s, 1 eV = 1.60 × 10-19 J)
(Multiple Choice)
4.7/5
(38)
Electrons emerge from an electron gun with a speed of 2.0 × 106 m/s and then pass through a pair of thin parallel slits. Interference fringes with a spacing of 2.7 mm are detected on a screen far from the double slit and fairly close to the center of the pattern. What would the fringe spacing be if the electrons were replaced by neutrons with the same speed? (mel = 9.11 × 10-31 kg, mneutron = 1.67 × 10-27 kg)
(Multiple Choice)
4.8/5
(46)
A hydrogen atom initially in the n = 6 state decays to the n = 2 state. The emitted photon is detected in a photographic plate. What is the wavelength of the detected photon? The lowest level energy state of hydrogen is -13.6 eV. (h = 6.626 × 10-34 J ∙ s, 1 eV = 1.60 × 10-19 J, c = 3.00 × 108 m/s)
(Multiple Choice)
4.9/5
(42)
In a ruby laser, an electron jumps from a higher energy level to a lower one. If the energy difference between the two levels is 1.8 eV, what is the wavelength of the emitted photon? (c = 3.00 × 108 m/s, h = 6.626 × 10-34 J ∙ s, 1 eV = 1.60 × 10-19 J)
(Multiple Choice)
4.9/5
(29)
Suppose that in a parallel universe, the proton and electron were identical to their counterparts in our own universe EXCEPT that the electron had twice as much charge as our electron. In our present universe, the radius of the first Bohr orbit for hydrogen is a0 and the speed of an electron in that orbit is v₀. In the parallel universe
(a) what would be the radius (in terms of a₀) of the first Bohr orbit for hydrogen?
(b) what would be the speed (in terms of v₀) of an electron in the first Bohr orbit for hydrogen?
(Short Answer)
4.8/5
(39)
The energy of the ground state in the Bohr model of the hydrogen atom is -13.6 eV. The energy of the n = 2 state of hydrogen in this model is closest to
(Multiple Choice)
5.0/5
(39)
Light excites atomic hydrogen from its lowest level to the n = 4 level. What is the energy of the light? The energy of the lowest level is -13.6 eV.
(Multiple Choice)
4.9/5
(30)
An unstable particle produced in a high-energy collision is measured to have an energy of 483 MeV and an uncertainty in energy of 84 keV. Use the Heisenberg uncertainty principle to estimate the lifetime of this particle. (
= 1.055 × 10-34 J ∙ s = 6.59 × 10-16 eV ∙ s)

(Short Answer)
4.7/5
(34)
A hydrogen atom makes a downward transition from the n = 20 state to the n = 5 state. Find the wavelength of the emitted photon. The lowest level energy state of hydrogen is -13.6 eV. (h = 6.626 × 10-34 J ∙ s, 1 eV = 1.60 × 10-19 J, c = 3.00 × 108 m/s)
(Multiple Choice)
4.8/5
(42)
The energy of the ground state in the Bohr model of the hydrogen atom is -13.6 eV. In a transition from the n = 2 state to the n = 4 state, a photon of energy
(Multiple Choice)
4.9/5
(41)
A gas of helium atoms (each of mass 6.65 × 10-27 kg) are at room temperature of 20.0°C. What is the de Broglie wavelength of the helium atoms that are moving at the root-mean-square speed? (h = 6.626 × 10-34 J ∙ s, the Boltzmann constant is 1.38 × 10-23 J/K)
(Multiple Choice)
4.8/5
(47)
Showing 41 - 52 of 52
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)