Exam 5: Thermochemistry: Energy Changes in Reactions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the following information to determine the enthalpy for the reaction shown below. CS2(l) Use the following information to determine the enthalpy for the reaction shown below. CS<sub>2</sub>(l)   <font face=symbol></font>3O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g)   <font face=symbol></font>2SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> ? C(graphite)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>393.5 kJ S(s)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>296.8 kJ C(graphite) <font face=symbol></font> 2S(s)   <font face=symbol></font>CS<sub>2</sub>(l) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> 87.9 kJ 3O2(g) Use the following information to determine the enthalpy for the reaction shown below. CS<sub>2</sub>(l)   <font face=symbol></font>3O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g)   <font face=symbol></font>2SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> ? C(graphite)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>393.5 kJ S(s)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>296.8 kJ C(graphite) <font face=symbol></font> 2S(s)   <font face=symbol></font>CS<sub>2</sub>(l) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> 87.9 kJ CO2(g) Use the following information to determine the enthalpy for the reaction shown below. CS<sub>2</sub>(l)   <font face=symbol></font>3O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g)   <font face=symbol></font>2SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> ? C(graphite)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>393.5 kJ S(s)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>296.8 kJ C(graphite) <font face=symbol></font> 2S(s)   <font face=symbol></font>CS<sub>2</sub>(l) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> 87.9 kJ 2SO2(g) H ? C(graphite) Use the following information to determine the enthalpy for the reaction shown below. CS<sub>2</sub>(l)   <font face=symbol></font>3O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g)   <font face=symbol></font>2SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> ? C(graphite)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>393.5 kJ S(s)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>296.8 kJ C(graphite) <font face=symbol></font> 2S(s)   <font face=symbol></font>CS<sub>2</sub>(l) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> 87.9 kJ O2(g) Use the following information to determine the enthalpy for the reaction shown below. CS<sub>2</sub>(l)   <font face=symbol></font>3O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g)   <font face=symbol></font>2SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> ? C(graphite)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>393.5 kJ S(s)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>296.8 kJ C(graphite) <font face=symbol></font> 2S(s)   <font face=symbol></font>CS<sub>2</sub>(l) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> 87.9 kJ CO2(g) H 393.5 kJ S(s) Use the following information to determine the enthalpy for the reaction shown below. CS<sub>2</sub>(l)   <font face=symbol></font>3O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g)   <font face=symbol></font>2SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> ? C(graphite)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>393.5 kJ S(s)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>296.8 kJ C(graphite) <font face=symbol></font> 2S(s)   <font face=symbol></font>CS<sub>2</sub>(l) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> 87.9 kJ O2(g) Use the following information to determine the enthalpy for the reaction shown below. CS<sub>2</sub>(l)   <font face=symbol></font>3O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g)   <font face=symbol></font>2SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> ? C(graphite)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>393.5 kJ S(s)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>296.8 kJ C(graphite) <font face=symbol></font> 2S(s)   <font face=symbol></font>CS<sub>2</sub>(l) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> 87.9 kJ SO2(g) H 296.8 kJ C(graphite) 2S(s) Use the following information to determine the enthalpy for the reaction shown below. CS<sub>2</sub>(l)   <font face=symbol></font>3O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g)   <font face=symbol></font>2SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> ? C(graphite)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>393.5 kJ S(s)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>296.8 kJ C(graphite) <font face=symbol></font> 2S(s)   <font face=symbol></font>CS<sub>2</sub>(l) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> 87.9 kJ CS2(l) H 87.9 kJ

(Multiple Choice)
4.9/5
(28)

For which reaction below does the enthalpy change under standard conditions correspond to a standard enthalpy of formation?

(Multiple Choice)
4.8/5
(42)

Benzoic acid is used to determine the heat capacity of bomb calorimeters because it can be obtained in pure form, and its energy of combustion is known very accurately (26.43 kJ/g). Determine the heat capacity of a calorimeter that had a temperature increase of 8.199C when 2.500 g of benzoic acid was used.

(Short Answer)
4.9/5
(34)

Describe the difference between the change in the internal energy (E) of a system and the change in enthalpy (H). Begin your description with the definition of enthalpy change.

(Essay)
4.7/5
(29)

Given the following thermochemical equation detailing the combustion of methane CH4(g) Given the following thermochemical equation detailing the combustion of methane CH<sub>4</sub>(g)   <font face=symbol></font>2O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g)   <font face=symbol></font>2H<sub>2</sub>O(g) <font face=symbol></font>H<sub>rxn </sub><font face=symbol></font> <font face=symbol></font>802kJ/mol CH<sub>4</sub> Determine the amount of energy released when 25.0 g of methane undergoes combustion. 2O2(g) Given the following thermochemical equation detailing the combustion of methane CH<sub>4</sub>(g)   <font face=symbol></font>2O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g)   <font face=symbol></font>2H<sub>2</sub>O(g) <font face=symbol></font>H<sub>rxn </sub><font face=symbol></font> <font face=symbol></font>802kJ/mol CH<sub>4</sub> Determine the amount of energy released when 25.0 g of methane undergoes combustion. CO2(g) Given the following thermochemical equation detailing the combustion of methane CH<sub>4</sub>(g)   <font face=symbol></font>2O<sub>2</sub>(g)   <font face=symbol></font>CO<sub>2</sub>(g)   <font face=symbol></font>2H<sub>2</sub>O(g) <font face=symbol></font>H<sub>rxn </sub><font face=symbol></font> <font face=symbol></font>802kJ/mol CH<sub>4</sub> Determine the amount of energy released when 25.0 g of methane undergoes combustion. 2H2O(g) Hrxn 802kJ/mol CH4 Determine the amount of energy released when 25.0 g of methane undergoes combustion.

(Multiple Choice)
4.8/5
(35)

The integrated circuits in your cell phone and computer are made from the semiconductor silicon. The silicon is obtained from a really inexpensive starting material, sand, which is primarily SiO2. One step in the purification of silicon is to separate it from solid impurities by forming the gas silicon tetrachloride. Given the following reactions, what is the overall enthalpy change in converting 1.00 mol of silicon dioxide into pure silicon? ReactionH (kJ) SiO2(s) The integrated circuits in your cell phone and computer are made from the semiconductor silicon. The silicon is obtained from a really inexpensive starting material, sand, which is primarily SiO<sub>2</sub>. One step in the purification of silicon is to separate it from solid impurities by forming the gas silicon tetrachloride. Given the following reactions, what is the overall enthalpy change in converting 1.00 mol of silicon dioxide into pure silicon? Reaction<font face=symbol></font>H<font face=symbol></font> (kJ) SiO<sub>2</sub>(s)   <font face=symbol></font>2C(s)   <font face=symbol></font>Si(impure s)   <font face=symbol></font>2CO(g)<font face=symbol></font>690 Si(impure s)   <font face=symbol></font>2Cl<sub>2</sub>(g)   <font face=symbol></font>SiCl<sub>4</sub>(g)<font face=symbol></font>657 SiCl<sub>4</sub>(g)   <font face=symbol></font>2Mg(s)   <font face=symbol></font>2MgCl<sub>2</sub>(s)   <font face=symbol></font>Si(s)<font face=symbol></font>625 2C(s) The integrated circuits in your cell phone and computer are made from the semiconductor silicon. The silicon is obtained from a really inexpensive starting material, sand, which is primarily SiO<sub>2</sub>. One step in the purification of silicon is to separate it from solid impurities by forming the gas silicon tetrachloride. Given the following reactions, what is the overall enthalpy change in converting 1.00 mol of silicon dioxide into pure silicon? Reaction<font face=symbol></font>H<font face=symbol></font> (kJ) SiO<sub>2</sub>(s)   <font face=symbol></font>2C(s)   <font face=symbol></font>Si(impure s)   <font face=symbol></font>2CO(g)<font face=symbol></font>690 Si(impure s)   <font face=symbol></font>2Cl<sub>2</sub>(g)   <font face=symbol></font>SiCl<sub>4</sub>(g)<font face=symbol></font>657 SiCl<sub>4</sub>(g)   <font face=symbol></font>2Mg(s)   <font face=symbol></font>2MgCl<sub>2</sub>(s)   <font face=symbol></font>Si(s)<font face=symbol></font>625 Si(impure s) The integrated circuits in your cell phone and computer are made from the semiconductor silicon. The silicon is obtained from a really inexpensive starting material, sand, which is primarily SiO<sub>2</sub>. One step in the purification of silicon is to separate it from solid impurities by forming the gas silicon tetrachloride. Given the following reactions, what is the overall enthalpy change in converting 1.00 mol of silicon dioxide into pure silicon? Reaction<font face=symbol></font>H<font face=symbol></font> (kJ) SiO<sub>2</sub>(s)   <font face=symbol></font>2C(s)   <font face=symbol></font>Si(impure s)   <font face=symbol></font>2CO(g)<font face=symbol></font>690 Si(impure s)   <font face=symbol></font>2Cl<sub>2</sub>(g)   <font face=symbol></font>SiCl<sub>4</sub>(g)<font face=symbol></font>657 SiCl<sub>4</sub>(g)   <font face=symbol></font>2Mg(s)   <font face=symbol></font>2MgCl<sub>2</sub>(s)   <font face=symbol></font>Si(s)<font face=symbol></font>625 2CO(g)690 Si(impure s) The integrated circuits in your cell phone and computer are made from the semiconductor silicon. The silicon is obtained from a really inexpensive starting material, sand, which is primarily SiO<sub>2</sub>. One step in the purification of silicon is to separate it from solid impurities by forming the gas silicon tetrachloride. Given the following reactions, what is the overall enthalpy change in converting 1.00 mol of silicon dioxide into pure silicon? Reaction<font face=symbol></font>H<font face=symbol></font> (kJ) SiO<sub>2</sub>(s)   <font face=symbol></font>2C(s)   <font face=symbol></font>Si(impure s)   <font face=symbol></font>2CO(g)<font face=symbol></font>690 Si(impure s)   <font face=symbol></font>2Cl<sub>2</sub>(g)   <font face=symbol></font>SiCl<sub>4</sub>(g)<font face=symbol></font>657 SiCl<sub>4</sub>(g)   <font face=symbol></font>2Mg(s)   <font face=symbol></font>2MgCl<sub>2</sub>(s)   <font face=symbol></font>Si(s)<font face=symbol></font>625 2Cl2(g) The integrated circuits in your cell phone and computer are made from the semiconductor silicon. The silicon is obtained from a really inexpensive starting material, sand, which is primarily SiO<sub>2</sub>. One step in the purification of silicon is to separate it from solid impurities by forming the gas silicon tetrachloride. Given the following reactions, what is the overall enthalpy change in converting 1.00 mol of silicon dioxide into pure silicon? Reaction<font face=symbol></font>H<font face=symbol></font> (kJ) SiO<sub>2</sub>(s)   <font face=symbol></font>2C(s)   <font face=symbol></font>Si(impure s)   <font face=symbol></font>2CO(g)<font face=symbol></font>690 Si(impure s)   <font face=symbol></font>2Cl<sub>2</sub>(g)   <font face=symbol></font>SiCl<sub>4</sub>(g)<font face=symbol></font>657 SiCl<sub>4</sub>(g)   <font face=symbol></font>2Mg(s)   <font face=symbol></font>2MgCl<sub>2</sub>(s)   <font face=symbol></font>Si(s)<font face=symbol></font>625 SiCl4(g)657 SiCl4(g) The integrated circuits in your cell phone and computer are made from the semiconductor silicon. The silicon is obtained from a really inexpensive starting material, sand, which is primarily SiO<sub>2</sub>. One step in the purification of silicon is to separate it from solid impurities by forming the gas silicon tetrachloride. Given the following reactions, what is the overall enthalpy change in converting 1.00 mol of silicon dioxide into pure silicon? Reaction<font face=symbol></font>H<font face=symbol></font> (kJ) SiO<sub>2</sub>(s)   <font face=symbol></font>2C(s)   <font face=symbol></font>Si(impure s)   <font face=symbol></font>2CO(g)<font face=symbol></font>690 Si(impure s)   <font face=symbol></font>2Cl<sub>2</sub>(g)   <font face=symbol></font>SiCl<sub>4</sub>(g)<font face=symbol></font>657 SiCl<sub>4</sub>(g)   <font face=symbol></font>2Mg(s)   <font face=symbol></font>2MgCl<sub>2</sub>(s)   <font face=symbol></font>Si(s)<font face=symbol></font>625 2Mg(s) The integrated circuits in your cell phone and computer are made from the semiconductor silicon. The silicon is obtained from a really inexpensive starting material, sand, which is primarily SiO<sub>2</sub>. One step in the purification of silicon is to separate it from solid impurities by forming the gas silicon tetrachloride. Given the following reactions, what is the overall enthalpy change in converting 1.00 mol of silicon dioxide into pure silicon? Reaction<font face=symbol></font>H<font face=symbol></font> (kJ) SiO<sub>2</sub>(s)   <font face=symbol></font>2C(s)   <font face=symbol></font>Si(impure s)   <font face=symbol></font>2CO(g)<font face=symbol></font>690 Si(impure s)   <font face=symbol></font>2Cl<sub>2</sub>(g)   <font face=symbol></font>SiCl<sub>4</sub>(g)<font face=symbol></font>657 SiCl<sub>4</sub>(g)   <font face=symbol></font>2Mg(s)   <font face=symbol></font>2MgCl<sub>2</sub>(s)   <font face=symbol></font>Si(s)<font face=symbol></font>625 2MgCl2(s) The integrated circuits in your cell phone and computer are made from the semiconductor silicon. The silicon is obtained from a really inexpensive starting material, sand, which is primarily SiO<sub>2</sub>. One step in the purification of silicon is to separate it from solid impurities by forming the gas silicon tetrachloride. Given the following reactions, what is the overall enthalpy change in converting 1.00 mol of silicon dioxide into pure silicon? Reaction<font face=symbol></font>H<font face=symbol></font> (kJ) SiO<sub>2</sub>(s)   <font face=symbol></font>2C(s)   <font face=symbol></font>Si(impure s)   <font face=symbol></font>2CO(g)<font face=symbol></font>690 Si(impure s)   <font face=symbol></font>2Cl<sub>2</sub>(g)   <font face=symbol></font>SiCl<sub>4</sub>(g)<font face=symbol></font>657 SiCl<sub>4</sub>(g)   <font face=symbol></font>2Mg(s)   <font face=symbol></font>2MgCl<sub>2</sub>(s)   <font face=symbol></font>Si(s)<font face=symbol></font>625 Si(s)625

(Multiple Choice)
4.9/5
(34)

Explain what is meant by the term state function, and give an example of something that is a state function and something that is not a state function.

(Essay)
4.8/5
(43)

Isooctane is a good model compound for gasoline. When 1.14 g of isooctane (114 g/mol) reacts with excess oxygen in a constant pressure calorimeter, the temperature of the calorimeter increases by 10.0oC. The heat capacity of the calorimeter is 5.46 kJ/oC. Determine the molar enthalpy of combustion of isooctane.

(Multiple Choice)
4.8/5
(51)

Ethanol (CH3CH2OH) has been suggested as an alternative fuel source. Ethanol's enthalpy of combustion is Hcomb 1,368 kJ/mol, and its density is 0.789 g/mL. What is the fuel value of ethanol (kJ/g)?

(Multiple Choice)
4.8/5
(45)

According to Coulomb's law, which ionic compound A-D has the smallest electrostatic potential energy (i.e., closest to zero)? The size of the anion increases in the order F < Cl < Br < I.

(Multiple Choice)
4.7/5
(35)

Which statement A-D about a state function is not correct?

(Multiple Choice)
4.7/5
(35)

Which of the following objects will cool the fastest from the same initial temperature, assuming you had equal masses of each?

(Multiple Choice)
4.9/5
(29)

In an experiment, 5.0 g of ice at 12 In an experiment, 5.0 g of ice at <font face=symbol></font>12   <font face=symbol></font>is converted into steam with a temperature of 120   <font face=symbol></font>. How much energy is required for this process?<font face=symbol></font><font face=symbol></font>   <font face=symbol></font><font face=symbol></font><sub>vap</sub> <font face=symbol></font> 2,260 J/g;   <font face=symbol></font>H<sub>fus</sub> <font face=symbol></font> 334 J/g; c<sub>s</sub>(ice) <font face=symbol></font> 2.06 J/(g <font face=symbol></font>   <font face=symbol></font>); c<sub>s</sub>(water) <font face=symbol></font> 4.18 J/(g <font face=symbol></font>   <font face=symbol></font>); c<sub>s</sub>(steam) <font face=symbol></font> 1.99 J/(g <font face=symbol></font>   <font face=symbol></font>)) is converted into steam with a temperature of 120 In an experiment, 5.0 g of ice at <font face=symbol></font>12   <font face=symbol></font>is converted into steam with a temperature of 120   <font face=symbol></font>. How much energy is required for this process?<font face=symbol></font><font face=symbol></font>   <font face=symbol></font><font face=symbol></font><sub>vap</sub> <font face=symbol></font> 2,260 J/g;   <font face=symbol></font>H<sub>fus</sub> <font face=symbol></font> 334 J/g; c<sub>s</sub>(ice) <font face=symbol></font> 2.06 J/(g <font face=symbol></font>   <font face=symbol></font>); c<sub>s</sub>(water) <font face=symbol></font> 4.18 J/(g <font face=symbol></font>   <font face=symbol></font>); c<sub>s</sub>(steam) <font face=symbol></font> 1.99 J/(g <font face=symbol></font>   <font face=symbol></font>)) . How much energy is required for this process? In an experiment, 5.0 g of ice at <font face=symbol></font>12   <font face=symbol></font>is converted into steam with a temperature of 120   <font face=symbol></font>. How much energy is required for this process?<font face=symbol></font><font face=symbol></font>   <font face=symbol></font><font face=symbol></font><sub>vap</sub> <font face=symbol></font> 2,260 J/g;   <font face=symbol></font>H<sub>fus</sub> <font face=symbol></font> 334 J/g; c<sub>s</sub>(ice) <font face=symbol></font> 2.06 J/(g <font face=symbol></font>   <font face=symbol></font>); c<sub>s</sub>(water) <font face=symbol></font> 4.18 J/(g <font face=symbol></font>   <font face=symbol></font>); c<sub>s</sub>(steam) <font face=symbol></font> 1.99 J/(g <font face=symbol></font>   <font face=symbol></font>)) vap 2,260 J/g; In an experiment, 5.0 g of ice at <font face=symbol></font>12   <font face=symbol></font>is converted into steam with a temperature of 120   <font face=symbol></font>. How much energy is required for this process?<font face=symbol></font><font face=symbol></font>   <font face=symbol></font><font face=symbol></font><sub>vap</sub> <font face=symbol></font> 2,260 J/g;   <font face=symbol></font>H<sub>fus</sub> <font face=symbol></font> 334 J/g; c<sub>s</sub>(ice) <font face=symbol></font> 2.06 J/(g <font face=symbol></font>   <font face=symbol></font>); c<sub>s</sub>(water) <font face=symbol></font> 4.18 J/(g <font face=symbol></font>   <font face=symbol></font>); c<sub>s</sub>(steam) <font face=symbol></font> 1.99 J/(g <font face=symbol></font>   <font face=symbol></font>)) Hfus 334 J/g; cs(ice) 2.06 J/(g In an experiment, 5.0 g of ice at <font face=symbol></font>12   <font face=symbol></font>is converted into steam with a temperature of 120   <font face=symbol></font>. How much energy is required for this process?<font face=symbol></font><font face=symbol></font>   <font face=symbol></font><font face=symbol></font><sub>vap</sub> <font face=symbol></font> 2,260 J/g;   <font face=symbol></font>H<sub>fus</sub> <font face=symbol></font> 334 J/g; c<sub>s</sub>(ice) <font face=symbol></font> 2.06 J/(g <font face=symbol></font>   <font face=symbol></font>); c<sub>s</sub>(water) <font face=symbol></font> 4.18 J/(g <font face=symbol></font>   <font face=symbol></font>); c<sub>s</sub>(steam) <font face=symbol></font> 1.99 J/(g <font face=symbol></font>   <font face=symbol></font>)) ); cs(water) 4.18 J/(g In an experiment, 5.0 g of ice at <font face=symbol></font>12   <font face=symbol></font>is converted into steam with a temperature of 120   <font face=symbol></font>. How much energy is required for this process?<font face=symbol></font><font face=symbol></font>   <font face=symbol></font><font face=symbol></font><sub>vap</sub> <font face=symbol></font> 2,260 J/g;   <font face=symbol></font>H<sub>fus</sub> <font face=symbol></font> 334 J/g; c<sub>s</sub>(ice) <font face=symbol></font> 2.06 J/(g <font face=symbol></font>   <font face=symbol></font>); c<sub>s</sub>(water) <font face=symbol></font> 4.18 J/(g <font face=symbol></font>   <font face=symbol></font>); c<sub>s</sub>(steam) <font face=symbol></font> 1.99 J/(g <font face=symbol></font>   <font face=symbol></font>)) ); cs(steam) 1.99 J/(g In an experiment, 5.0 g of ice at <font face=symbol></font>12   <font face=symbol></font>is converted into steam with a temperature of 120   <font face=symbol></font>. How much energy is required for this process?<font face=symbol></font><font face=symbol></font>   <font face=symbol></font><font face=symbol></font><sub>vap</sub> <font face=symbol></font> 2,260 J/g;   <font face=symbol></font>H<sub>fus</sub> <font face=symbol></font> 334 J/g; c<sub>s</sub>(ice) <font face=symbol></font> 2.06 J/(g <font face=symbol></font>   <font face=symbol></font>); c<sub>s</sub>(water) <font face=symbol></font> 4.18 J/(g <font face=symbol></font>   <font face=symbol></font>); c<sub>s</sub>(steam) <font face=symbol></font> 1.99 J/(g <font face=symbol></font>   <font face=symbol></font>)) ))

(Multiple Choice)
4.8/5
(33)

Energy that an object has by virtue of its position is called ________

(Multiple Choice)
4.9/5
(41)

What will be the final temperature of a 10.0 g piece of iron (CP 25.09 J/(mol · What will be the final temperature of a 10.0 g piece of iron (C<sub>P</sub> <font face=symbol></font> 25.09 J/(mol ·   <font face=symbol></font>)) initially at 25<font face=symbol></font>C, if it is supplied with 9.5 J from a stove? )) initially at 25C, if it is supplied with 9.5 J from a stove?

(Multiple Choice)
4.8/5
(37)

Which of the following bar charts shows the correct internal energy changes that occur when a propane grill is used to cook a steak? (Consider the propane combustion reaction to be the system. Consider the grill, steak, and everything else to be the surroundings.)

(Multiple Choice)
4.9/5
(30)

Assuming that the distance between ions remains constant in all cases, which of the following ion pairs has the greatest electrostatic potential energy (i.e., largest in magnitude)?

(Multiple Choice)
4.8/5
(44)

A cooling curve for some substance is shown below. Which of the line segments (I-V) represents cooling of the gas? A cooling curve for some substance is shown below. Which of the line segments (I-V) represents cooling of the gas?

(Multiple Choice)
4.8/5
(38)

The diagram below shows three ion pairs: (a) a doubly charged anion and cation, (b) a singly charged anion and cation, and (c) two doubly charged anions. (I) Label each pair to identify the electrostatic interaction as attractive or as repulsive. (II) Which pair has the largest electrostatic interaction energy that is positive? (III) Which pair has the largest electrostatic interaction energy that is negative? (IV) Which pair has the smallest electrostatic interaction energy? The diagram below shows three ion pairs: (a) a doubly charged anion and cation, (b) a singly charged anion and cation, and (c) two doubly charged anions. (I) Label each pair to identify the electrostatic interaction as attractive or as repulsive. (II) Which pair has the largest electrostatic interaction energy that is positive? (III) Which pair has the largest electrostatic interaction energy that is negative? (IV) Which pair has the smallest electrostatic interaction energy?       (a) (b) (c) The diagram below shows three ion pairs: (a) a doubly charged anion and cation, (b) a singly charged anion and cation, and (c) two doubly charged anions. (I) Label each pair to identify the electrostatic interaction as attractive or as repulsive. (II) Which pair has the largest electrostatic interaction energy that is positive? (III) Which pair has the largest electrostatic interaction energy that is negative? (IV) Which pair has the smallest electrostatic interaction energy?       (a) (b) (c) The diagram below shows three ion pairs: (a) a doubly charged anion and cation, (b) a singly charged anion and cation, and (c) two doubly charged anions. (I) Label each pair to identify the electrostatic interaction as attractive or as repulsive. (II) Which pair has the largest electrostatic interaction energy that is positive? (III) Which pair has the largest electrostatic interaction energy that is negative? (IV) Which pair has the smallest electrostatic interaction energy?       (a) (b) (c) (a) (b) (c)

(Essay)
4.9/5
(38)

A cooling curve for some substance is shown below. Which of the line segments (I-V) represents the liquid-to-solid transition? A cooling curve for some substance is shown below. Which of the line segments (I-V) represents the liquid-to-solid transition?

(Multiple Choice)
4.9/5
(37)
Showing 21 - 40 of 139
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)