Exam 5: Thermochemistry: Energy Changes in Reactions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Indicate which of the following is not an element in its standard state at 25 Indicate which of the following is not an element in its standard state at 25   <font face=symbol></font>C and 1 atm. C and 1 atm.

(Multiple Choice)
4.8/5
(37)

Assuming that the charge of the ions remain constant in all cases, which of the following ion pairs has the greatest electrostatic potential energy (i.e., largest in magnitude)? Assuming that the charge of the ions remain constant in all cases, which of the following ion pairs has the greatest electrostatic potential energy (i.e., largest in magnitude)?

(Multiple Choice)
4.8/5
(40)

Use the following information to determine the standard enthalpy change when 1 mol of PbO(s) is formed from lead metal and oxygen gas. PbO(s) Use the following information to determine the standard enthalpy change when 1 mol of PbO(s) is formed from lead metal and oxygen gas. PbO(s)   <font face=symbol></font>C(graphite)   <font face=symbol></font>Pb(s)   <font face=symbol></font>CO(g) <font face=symbol></font>H   <font face=symbol></font><font face=symbol></font> 107 kJ 2C(graphite)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2CO(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>222 kJ C(graphite) Use the following information to determine the standard enthalpy change when 1 mol of PbO(s) is formed from lead metal and oxygen gas. PbO(s)   <font face=symbol></font>C(graphite)   <font face=symbol></font>Pb(s)   <font face=symbol></font>CO(g) <font face=symbol></font>H   <font face=symbol></font><font face=symbol></font> 107 kJ 2C(graphite)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2CO(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>222 kJ Pb(s) Use the following information to determine the standard enthalpy change when 1 mol of PbO(s) is formed from lead metal and oxygen gas. PbO(s)   <font face=symbol></font>C(graphite)   <font face=symbol></font>Pb(s)   <font face=symbol></font>CO(g) <font face=symbol></font>H   <font face=symbol></font><font face=symbol></font> 107 kJ 2C(graphite)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2CO(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>222 kJ CO(g) H Use the following information to determine the standard enthalpy change when 1 mol of PbO(s) is formed from lead metal and oxygen gas. PbO(s)   <font face=symbol></font>C(graphite)   <font face=symbol></font>Pb(s)   <font face=symbol></font>CO(g) <font face=symbol></font>H   <font face=symbol></font><font face=symbol></font> 107 kJ 2C(graphite)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2CO(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>222 kJ 107 kJ 2C(graphite) Use the following information to determine the standard enthalpy change when 1 mol of PbO(s) is formed from lead metal and oxygen gas. PbO(s)   <font face=symbol></font>C(graphite)   <font face=symbol></font>Pb(s)   <font face=symbol></font>CO(g) <font face=symbol></font>H   <font face=symbol></font><font face=symbol></font> 107 kJ 2C(graphite)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2CO(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>222 kJ O2(g) Use the following information to determine the standard enthalpy change when 1 mol of PbO(s) is formed from lead metal and oxygen gas. PbO(s)   <font face=symbol></font>C(graphite)   <font face=symbol></font>Pb(s)   <font face=symbol></font>CO(g) <font face=symbol></font>H   <font face=symbol></font><font face=symbol></font> 107 kJ 2C(graphite)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2CO(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> <font face=symbol></font>222 kJ 2CO(g) H 222 kJ

(Multiple Choice)
4.9/5
(36)

In terms of the enthalpy of formation, which of the following compounds is the most unstable compared to its elements under standard conditions?

(Multiple Choice)
4.9/5
(41)

A 150 g piece of iron (CP 25.09 J/(mol A 150 g piece of iron (C<sub>P</sub> <font face=symbol></font> 25.09 J/(mol <font face=symbol></font>   <font face=symbol></font>)) was heated to a temperature of 47   <font face=symbol></font>and then placed in contact with a 275 g piece of copper at 20   <font face=symbol></font>(C<sub>P</sub> <font face=symbol></font> 25.46 J/(mol <font face=symbol></font>   <font face=symbol></font>)). What was the final temperature of the two pieces of metal? )) was heated to a temperature of 47 A 150 g piece of iron (C<sub>P</sub> <font face=symbol></font> 25.09 J/(mol <font face=symbol></font>   <font face=symbol></font>)) was heated to a temperature of 47   <font face=symbol></font>and then placed in contact with a 275 g piece of copper at 20   <font face=symbol></font>(C<sub>P</sub> <font face=symbol></font> 25.46 J/(mol <font face=symbol></font>   <font face=symbol></font>)). What was the final temperature of the two pieces of metal? and then placed in contact with a 275 g piece of copper at 20 A 150 g piece of iron (C<sub>P</sub> <font face=symbol></font> 25.09 J/(mol <font face=symbol></font>   <font face=symbol></font>)) was heated to a temperature of 47   <font face=symbol></font>and then placed in contact with a 275 g piece of copper at 20   <font face=symbol></font>(C<sub>P</sub> <font face=symbol></font> 25.46 J/(mol <font face=symbol></font>   <font face=symbol></font>)). What was the final temperature of the two pieces of metal? (CP 25.46 J/(mol A 150 g piece of iron (C<sub>P</sub> <font face=symbol></font> 25.09 J/(mol <font face=symbol></font>   <font face=symbol></font>)) was heated to a temperature of 47   <font face=symbol></font>and then placed in contact with a 275 g piece of copper at 20   <font face=symbol></font>(C<sub>P</sub> <font face=symbol></font> 25.46 J/(mol <font face=symbol></font>   <font face=symbol></font>)). What was the final temperature of the two pieces of metal? )). What was the final temperature of the two pieces of metal?

(Multiple Choice)
4.9/5
(37)

Using the following data for water, determine the final temperature when 100 g of ice at 10 Using the following data for water, determine the final temperature when 100 g of ice at <font face=symbol></font>10   <font face=symbol></font>is heated with 350 kJ of energy. Boiling point 373 K Melting point 273 K Enthalpy of vaporization 2,260 J/g Enthalpy of fusion 334 J/g Specific heat capacity (solid) 2)11 J/(g <font face=symbol></font> K) Specific heat capacity (liquid) 4)18 J/(g <font face=symbol></font> K) Specific heat capacity (gas) 2)08 J/(g <font face=symbol></font> K) is heated with 350 kJ of energy. Boiling point 373 K Melting point 273 K Enthalpy of vaporization 2,260 J/g Enthalpy of fusion 334 J/g Specific heat capacity (solid) 2)11 J/(g K) Specific heat capacity (liquid) 4)18 J/(g K) Specific heat capacity (gas) 2)08 J/(g K)

(Multiple Choice)
4.9/5
(46)

At a certain elevation, the boiling point of water is 98.5 At a certain elevation, the boiling point of water is 98.5   . How much energy is needed to heat 35.0 mL of water to the boiling point at this elevation if the water initially was at 23.4<font face=symbol></font>C? (C<sub>P</sub> <font face=symbol></font> 75.38 J/(mol ·   ), d <font face=symbol></font> 1.00 g/mL) . How much energy is needed to heat 35.0 mL of water to the boiling point at this elevation if the water initially was at 23.4C? (CP 75.38 J/(mol · At a certain elevation, the boiling point of water is 98.5   . How much energy is needed to heat 35.0 mL of water to the boiling point at this elevation if the water initially was at 23.4<font face=symbol></font>C? (C<sub>P</sub> <font face=symbol></font> 75.38 J/(mol ·   ), d <font face=symbol></font> 1.00 g/mL) ), d 1.00 g/mL)

(Multiple Choice)
4.9/5
(33)

A 15 g piece of iron (CP 25.09 J/(mol · C)) is heated to a temperature of 95C and placed into a bucket containing 4.5 gal of water (CP 75.38 J/(mol · C)) initially at 25C. Eventually, ________

(Multiple Choice)
5.0/5
(40)

Which statement A-D about a system and its surroundings is not correct?

(Multiple Choice)
4.9/5
(29)

Use the following information to determine the enthalpy for the reaction shown below. S(s) O2(g) SO2(g) H ? S(s) Use the following information to determine the enthalpy for the reaction shown below. S(s) <font face=symbol></font> O<sub>2</sub>(g) <font face=symbol></font> SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> ? S(s)   <font face=symbol></font>   O<sub>2</sub>(g)   <font face=symbol></font>SO<sub>3</sub>(g)   2SO<sub>2</sub>(g)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2SO<sub>3</sub>(g)  Use the following information to determine the enthalpy for the reaction shown below. S(s) <font face=symbol></font> O<sub>2</sub>(g) <font face=symbol></font> SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> ? S(s)   <font face=symbol></font>   O<sub>2</sub>(g)   <font face=symbol></font>SO<sub>3</sub>(g)   2SO<sub>2</sub>(g)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2SO<sub>3</sub>(g)  O2(g) Use the following information to determine the enthalpy for the reaction shown below. S(s) <font face=symbol></font> O<sub>2</sub>(g) <font face=symbol></font> SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> ? S(s)   <font face=symbol></font>   O<sub>2</sub>(g)   <font face=symbol></font>SO<sub>3</sub>(g)   2SO<sub>2</sub>(g)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2SO<sub>3</sub>(g)  SO3(g) Use the following information to determine the enthalpy for the reaction shown below. S(s) <font face=symbol></font> O<sub>2</sub>(g) <font face=symbol></font> SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> ? S(s)   <font face=symbol></font>   O<sub>2</sub>(g)   <font face=symbol></font>SO<sub>3</sub>(g)   2SO<sub>2</sub>(g)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2SO<sub>3</sub>(g)  2SO2(g) Use the following information to determine the enthalpy for the reaction shown below. S(s) <font face=symbol></font> O<sub>2</sub>(g) <font face=symbol></font> SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> ? S(s)   <font face=symbol></font>   O<sub>2</sub>(g)   <font face=symbol></font>SO<sub>3</sub>(g)   2SO<sub>2</sub>(g)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2SO<sub>3</sub>(g)  O2(g) Use the following information to determine the enthalpy for the reaction shown below. S(s) <font face=symbol></font> O<sub>2</sub>(g) <font face=symbol></font> SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> ? S(s)   <font face=symbol></font>   O<sub>2</sub>(g)   <font face=symbol></font>SO<sub>3</sub>(g)   2SO<sub>2</sub>(g)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2SO<sub>3</sub>(g)  2SO3(g) Use the following information to determine the enthalpy for the reaction shown below. S(s) <font face=symbol></font> O<sub>2</sub>(g) <font face=symbol></font> SO<sub>2</sub>(g) <font face=symbol></font>H<font face=symbol></font> <font face=symbol></font> ? S(s)   <font face=symbol></font>   O<sub>2</sub>(g)   <font face=symbol></font>SO<sub>3</sub>(g)   2SO<sub>2</sub>(g)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2SO<sub>3</sub>(g)

(Multiple Choice)
4.7/5
(23)

For which reaction below does the enthalpy change under standard conditions correspond to a standard enthalpy of formation?

(Multiple Choice)
4.9/5
(47)

Which of the following fuels has the highest fuel value (kJ/g)?

(Multiple Choice)
4.8/5
(29)

Steam in a cylinder is compressed by a piston exerting a constant pressure of 5 atm. The volume of the cylinder decreases by 15 L and simultaneously the steam is cooled, losing 105 kJ of energy as heat. How much energy, total, was gained or lost by the steam in this process? (101.3 J 1 L atm)

(Multiple Choice)
4.9/5
(38)

Using the data shown below for water, determine in the following heating curve what region the water will be in when 50 g of ice at 25C is provided with 35 kJ of energy. Using the data shown below for water, determine in the following heating curve what region the water will be in when 50 g of ice at <font face=symbol></font>25<font face=symbol></font>C is provided with 35 kJ of energy.   Boiling point 373 K Melting point 273 K Enthalpy of vaporization 2,260 J/g Enthalpy of fusion 334 J/g Specific heat capacity (solid) 2.11 J/(g <font face=symbol></font> K) Specific heat capacity (liquid) 4.18 J/(g <font face=symbol></font> K) Specific heat capacity (gas) 2.08 J/(g <font face=symbol></font> K) Boiling point 373 K Melting point 273 K Enthalpy of vaporization 2,260 J/g Enthalpy of fusion 334 J/g Specific heat capacity (solid) 2.11 J/(g K) Specific heat capacity (liquid) 4.18 J/(g K) Specific heat capacity (gas) 2.08 J/(g K)

(Short Answer)
4.9/5
(37)

To cool your 250 mL of coffee at 90C, you put a 100 g metal spoon in a glass of ice water to lower its temperature to 0C, and then you put the spoon in the coffee. After thermal equilibrium has been reached, what is the final temperature of your coffee? Assume energy is exchanged only between the spoon and the coffee. The heat capacity of the metal spoon is 80 J/C. Assume the specific heat and density of coffee are the same as that of water, 4.18 J/(g C) and 1.00 g/mL.

(Short Answer)
4.7/5
(32)

Determine the standard enthalpy of formation for NO given the following information about the formation of NO2 under standard conditions, and Determine the standard enthalpy of formation for NO given the following information about the formation of NO<sub>2</sub> under standard conditions, and   <font face=symbol></font>   (NO<sub>2</sub>)   <font face=symbol></font>33.2 kJ/mol. 2NO(g)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2NO<sub>2</sub>(g) <font face=symbol></font>H<sub>rxn</sub>   <font face=symbol></font>114.2 kJ Determine the standard enthalpy of formation for NO given the following information about the formation of NO<sub>2</sub> under standard conditions, and   <font face=symbol></font>   (NO<sub>2</sub>)   <font face=symbol></font>33.2 kJ/mol. 2NO(g)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2NO<sub>2</sub>(g) <font face=symbol></font>H<sub>rxn</sub>   <font face=symbol></font>114.2 kJ (NO2) Determine the standard enthalpy of formation for NO given the following information about the formation of NO<sub>2</sub> under standard conditions, and   <font face=symbol></font>   (NO<sub>2</sub>)   <font face=symbol></font>33.2 kJ/mol. 2NO(g)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2NO<sub>2</sub>(g) <font face=symbol></font>H<sub>rxn</sub>   <font face=symbol></font>114.2 kJ 33.2 kJ/mol. 2NO(g) Determine the standard enthalpy of formation for NO given the following information about the formation of NO<sub>2</sub> under standard conditions, and   <font face=symbol></font>   (NO<sub>2</sub>)   <font face=symbol></font>33.2 kJ/mol. 2NO(g)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2NO<sub>2</sub>(g) <font face=symbol></font>H<sub>rxn</sub>   <font face=symbol></font>114.2 kJ O2(g) Determine the standard enthalpy of formation for NO given the following information about the formation of NO<sub>2</sub> under standard conditions, and   <font face=symbol></font>   (NO<sub>2</sub>)   <font face=symbol></font>33.2 kJ/mol. 2NO(g)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2NO<sub>2</sub>(g) <font face=symbol></font>H<sub>rxn</sub>   <font face=symbol></font>114.2 kJ 2NO2(g) Hrxn Determine the standard enthalpy of formation for NO given the following information about the formation of NO<sub>2</sub> under standard conditions, and   <font face=symbol></font>   (NO<sub>2</sub>)   <font face=symbol></font>33.2 kJ/mol. 2NO(g)   <font face=symbol></font>O<sub>2</sub>(g)   <font face=symbol></font>2NO<sub>2</sub>(g) <font face=symbol></font>H<sub>rxn</sub>   <font face=symbol></font>114.2 kJ 114.2 kJ

(Multiple Choice)
4.8/5
(38)

Napthalene is often used to determine the heat capacity of bomb calorimeters because it can be obtained in pure form and its energy of combustion is known very accurately (40.18 kJ/g). Determine the heat capacity of a calorimeter that had a temperature increase of 7.55C when 1.250 g of napthalene was used.

(Multiple Choice)
4.9/5
(44)

State the first law of thermodynamics. Describe two situations where Esys could be negative.

(Essay)
4.8/5
(30)

During a(n) ________ process, energy is transferred from the system to the surroundings.

(Multiple Choice)
4.7/5
(45)
Showing 121 - 139 of 139
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)