Exam 13: A Fundamental Tool- Vectors

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

If v=2i+j+4k\vec { v } = 2 \vec { i } + \vec { j } + 4 \vec { k } and w=i+j2k\vec { w } = \vec { i } + \vec { j } - 2 \vec { k } , find the value of s so that v+sw\vec { v } + s \vec { w } is perpendicular to wˉ\bar { w } .

(Essay)
4.8/5
(44)

If u=4i+5j+3k\vec { u } = 4 \vec { i } + 5 \vec { j } + 3 \vec { k } and v=2i4j+3k\vec { v } = 2 \vec { i } - 4 \vec { j } + 3 \vec { k } , find 5u+4v5 \vec { u } + 4 \vec { v } .

(Essay)
4.9/5
(37)

Let ABCDEF be a regular hexagon.Express the vectors DE\overrightarrow { D \vec { E } } and CT\overrightarrow { C \vec { T } } in terms of AB\vec{AB} .

(Essay)
4.9/5
(37)

If a0\vec { a } \neq \overrightarrow { 0 } , then aa\frac { \vec { a } } { \| \vec { a } \| } is a unit vector which is parallel to a\vec { a } .

(True/False)
4.9/5
(27)

If w=2ij+2k,v=i+3j\vec { w } = 2 \vec { i } - \vec { j } + 2 \vec { k } , \quad \vec { v } = \vec { i } + 3 \vec { j } find a unit vector perpendicular to both W\vec { W } and vˉ.\bar { v } .

(Essay)
4.7/5
(38)

Suppose that u\vec { u } and v\vec { v } are non-zero vectors and (u+v)×(uv)=0( \vec { u } + \vec { v } ) \times ( \vec { u } - \vec { v } ) = \overrightarrow { 0 } .Then what MUST be true about u\vec { u } and v\vec { v } ?

(Multiple Choice)
4.9/5
(39)

If ai+bj>ci+dj\|a \vec{i}+b \vec{j}\|>\|c \vec{i}+d \vec{j}\| , then a > b and c > d.

(True/False)
4.8/5
(37)

Find the vector u\vec { u } in 3-space which satisfies both of the following conditions. (a) uk=5\vec { u } \cdot \vec { k } = 5 (b) u×k=5i2j\vec { u } \times \vec { k } = 5 \vec { i } - 2 \vec { j }

(Essay)
4.8/5
(35)

Find the angle between the planes 4(x1)+3(y+2)+5z=0- 4 ( x - 1 ) + 3 ( y + 2 ) + 5 z = 0 and x+4(y1)+2(z+4)=0x + 4 ( y - 1 ) + 2 ( z + 4 ) = 0 .

(Essay)
4.8/5
(36)

If the vector 2i5j+αk2 \vec { i } - 5 \vec { j } + \alpha \vec { k } has magnitude 9, find a.

(Essay)
4.7/5
(41)

If a,b0\vec { a } , \vec { b } \neq \overrightarrow { 0 } , then a(a×b)=0\vec { a } \cdot ( \vec { a } \times \vec { b } ) = 0 .Why is this true?

(Essay)
4.9/5
(29)

Two boats leave a harbor at the same time.Boat A cruises northwest at a rate of 17 knots (nautical miles per hour).Boat B cruises north at a rate of 21 knots. (a)Find the displacement vector from boat A to boat B half an hour later. (b)For the passengers in boat A, what does the velocity of boat B appear to be?

(Essay)
4.9/5
(36)

Let ABCDEF be a regular hexagon.Express 12ADAB\frac { 1 } { 2 } \overrightarrow { A D } - \overrightarrow { A B } in terms of BE \vec {B E } .

(Essay)
4.8/5
(41)

Compute the area of the triangle with vertices A(0, 0, 0), B(3, 3, 0), and C(3, 6, 3).

(Essay)
4.9/5
(34)

What is the geometric definition of v×w\| \vec { v } \times \vec { w } \| ?

(Essay)
4.9/5
(39)

Let ABCDEF be a regular hexagon.Express 12AD+AE\frac { 1 } { 2 } \overrightarrow { A D } + \overrightarrow { AE } in terms of DF \vec {D F } .

(Essay)
4.8/5
(31)

Let A, B, C, D, E, and F be points on a plane.Explain why Let A, B, C, D, E, and F be points on a plane.Explain why   . .

(Essay)
5.0/5
(31)

Given that v\vec { v } and w\vec { w } are non-zero vectors and that vw=2\vec { v } \cdot \vec { w } = 2 , then which of the following MUST be true? Select all that apply.

(Multiple Choice)
4.9/5
(45)

Find the volume of the parallelopiped with edges 4i3j+k4 \vec { i } - 3 \vec { j } + \vec { k } , i6j+k\vec { i } - 6 \vec { j } + \vec { k } , and i+j+2k\vec { i } + \vec { j } + 2 \vec { k } .

(Essay)
4.8/5
(35)

The vector a×b\vec { a } \times \vec { b } is parallel to the x-axis where a\vec{a} and b\vec { b } are shown below (both α\vec { \alpha } and b\vec { b } are in the xy-plane).  The vector  \vec { a } \times \vec { b }  is parallel to the x-axis where  \vec{a}  and  \vec { b }  are shown below (both  \vec { \alpha }  and  \vec { b }  are in the xy-plane).

(True/False)
4.9/5
(28)
Showing 41 - 60 of 107
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)