Exam 8: Basic Integration Rules

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Evaluate the limit limx4+(8(x4))x4\lim _ { x \rightarrow 4 ^ { + } } ( 8 ( x - 4 ) ) ^ { x - 4 } using L'Hopital's Rule if necessary.

(Multiple Choice)
4.9/5
(39)

Find the indefinite integral. cosxsin3xdx\int \cos x \sin ^ { 3 } x d x

(Multiple Choice)
4.8/5
(36)

Find the indefinite integral. s4s+3ds\int s \sqrt { 4 s + 3 } d s

(Multiple Choice)
4.8/5
(35)

Find the indefinite integral. tan3(πx2)sec2(πx2)dx\int \tan ^ { 3 } \left( \frac { \pi x } { 2 } \right) \sec ^ { 2 } \left( \frac { \pi x } { 2 } \right) d x

(Multiple Choice)
4.8/5
(30)

 Find the indefinite integral by making the substitution x=3secθ\text { Find the indefinite integral by making the substitution } x = 3 \sec \theta \text {. } x3x29dx\int \frac { x ^ { 3 } } { \sqrt { x ^ { 2 } - 9 } } d x

(Multiple Choice)
4.9/5
(24)

 Evaluate 0π426tan3xdx\text { Evaluate } \int _ { 0 } ^ { \frac { \pi } { 4 } } 26 \tan ^ { 3 } x d x \text {. }

(Multiple Choice)
4.8/5
(41)

 Use integration tables to find 28t61+sin(t7)dt\text { Use integration tables to find } \int \frac { 28 t ^ { 6 } } { 1 + \sin \left( t ^ { 7 } \right) } d t \text {. }

(Multiple Choice)
4.9/5
(35)

Find the indefinite integral. 4x2exdx\int \frac { 4 x ^ { 2 } } { e ^ { x } } d x

(Multiple Choice)
4.9/5
(44)

Find the indefinite integral. sin319θcos19θdθ\int \sin ^ { 3 } 19 \theta \sqrt { \cos 19 \theta } d \theta

(Multiple Choice)
5.0/5
(36)

Find the indefinite integral. x3e6x2dx\int x ^ { 3 } e ^ { 6 x ^ { 2 } } d x

(Multiple Choice)
4.8/5
(28)

 Find the indefinite integral by making the substitution x=7sinθ\text { Find the indefinite integral by making the substitution } x = 7 \sin \theta \text {. } x(49x2)3/2dx\int \frac { x } { \left( 49 - x ^ { 2 } \right) ^ { 3 / 2 } } d x

(Multiple Choice)
5.0/5
(39)

The predicted cost C (in hundreds of thousands of dollars) for a company to remove p% of a chemical from its waste water is shown in the table below. A model for the data is given by C=128p(12+p)(101p),0p<100C = \frac { 128 p } { ( 12 + p ) ( 101 - p ) } , 0 \leq p < 100 . Use the model to find the average cost for removing between 75%75 \% and 80%80 \% of the chemical. p 0 10 20 30 40 50 60 70 80 90 C 0 0.6 1 1.3 1.6 2 2.6 3.5 5.3 10.3

(Multiple Choice)
4.9/5
(38)

Find the integral using integration by parts. x4lnxdx\int x ^ { 4 } \ln x d x

(Multiple Choice)
4.8/5
(32)

 Evaluate the limit limx7xsin(8x) using L’Hopital’s Rule if necessary. \text { Evaluate the limit } \lim _ { x \rightarrow \infty } 7 x \sin \left( \frac { 8 } { x } \right) \text { using L'Hopital's Rule if necessary. }

(Multiple Choice)
4.7/5
(32)

 Find the area of the region bounded by the graphs of y=16x2+5x+6,y=0,x=0\text { Find the area of the region bounded by the graphs of } y = \frac { 16 } { x ^ { 2 } + 5 x + 6 } , y = 0 , x = 0 \text {, } and x=1x = 1 .

(Multiple Choice)
4.7/5
(25)

Find the indefinite integral. sin23xdx\int \sin ^ { 2 } 3 x d x

(Multiple Choice)
4.8/5
(30)

 Suppose the capitalized cost C is given by C=C0+0nc(t)endt, where C0 is the \text { Suppose the capitalized cost } C \text { is given by } C = C _ { 0 } + \int _ { 0 } ^ { n } c ( t ) e ^ { - n } d t \text {, where } C _ { 0 } \text { is the } original investment, tt is the time in years, rr is the annual interest rate compounded continuously, and c(t)c ( t ) is the annual cost of maintenance. Find the capitalized cost CC of an asset forever if C0=670,000,c(t)=22,000C _ { 0 } = 670,000 , c ( t ) = 22,000 , and r=0.09r = 0.09 . Round your answer to the nearest dollar.

(Multiple Choice)
4.8/5
(31)

 Evaluate the limx2x64x2+8x+5 using L’Hoˆpital’s Rule if necessary. \text { Evaluate the } \lim _ { x \rightarrow \infty } \frac { 2 x - 6 } { 4 x ^ { 2 } + 8 x + 5 } \text { using L'Hôpital's Rule if necessary. }

(Multiple Choice)
4.8/5
(39)

Find the indefinite integral. cot(13/z2)z3dz\int \frac { \cot \left( 13 / z ^ { 2 } \right) } { z ^ { 3 } } d z

(Multiple Choice)
4.8/5
(37)

 Find the indefinite integral by making the substitution x=9sinθ\text { Find the indefinite integral by making the substitution } x = 9 \sin \theta \text {. } 81x2xdx\int \frac { \sqrt { 81 - x ^ { 2 } } } { x } d x

(Multiple Choice)
4.9/5
(33)
Showing 61 - 80 of 127
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)