Exam 8: Basic Integration Rules

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

 Determine whether the improper integral 010x(x+81)dx diverges or converges. \text { Determine whether the improper integral } \int _ { 0 } ^ { \infty } \frac { 10 } { \sqrt { x } ( x + 81 ) } d x \text { diverges or converges. } Evaluate the integral if it converges.

(Multiple Choice)
4.9/5
(40)

 Determine whether the improper integral 0111x3dx diverges or converges. \text { Determine whether the improper integral } \int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt [ 3 ] { 1 - x } } d x \text { diverges or converges. } Evaluate the integral if it converges.

(Multiple Choice)
4.8/5
(33)

Use a table of integrals to find the integral. 49x4xdx\int \frac { \sqrt { 49 - x ^ { 4 } } } { x } d x

(Multiple Choice)
4.9/5
(39)

 Determine whether the improper integral 42x3dx diverges or converges. Evaluate \text { Determine whether the improper integral } \int _ { 4 } ^ { \infty } \frac { 2 } { x ^ { 3 } } d x \text { diverges or converges. Evaluate } the integral if it converges.

(Multiple Choice)
4.8/5
(31)

 Use partial fractions to find the integral 12x2+5x+225x3+25xdx\text { Use partial fractions to find the integral } \int \frac { 12 x ^ { 2 } + 5 x + 225 } { x ^ { 3 } + 25 x } d x

(Multiple Choice)
4.9/5
(38)

 Find 16x2+9x4dx\text { Find } \int \frac { \sqrt { 16 x ^ { 2 } + 9 } } { x ^ { 4 } } d x \text {. }

(Multiple Choice)
4.8/5
(32)

 Use partial fractions to find the integral 3x328x2+39x+82x210x+21dx\text { Use partial fractions to find the integral } \int \frac { 3 x ^ { 3 } - 28 x ^ { 2 } + 39 x + 82 } { x ^ { 2 } - 10 x + 21 } d x \text {. }

(Multiple Choice)
4.9/5
(36)

 Evaluate the limit limx567x+8x25x27 first by using techniques from Chapter 3 then \text { Evaluate the limit } \lim _ { x \rightarrow \infty } \frac { 56 - 7 x + 8 x ^ { 2 } } { 5 x ^ { 2 } - 7 } \text { first by using techniques from Chapter } 3 \text { then } by using L'Hopital's Rule.

(Multiple Choice)
4.9/5
(29)

 Solve dydx=x2x32\text { Solve } \frac { d y } { d x } = x ^ { 2 } \sqrt { x - 32 }

(Multiple Choice)
4.9/5
(31)

Find the indefinite integral. tan5(x5)dx\int \tan ^ { 5 } \left( \frac { x } { 5 } \right) d x

(Multiple Choice)
5.0/5
(34)

 Use partial fractions to find the integral 16x136x216x+60dx\text { Use partial fractions to find the integral } \int \frac { 16 x - 136 } { x ^ { 2 } - 16 x + 60 } d x \text {. }

(Multiple Choice)
4.9/5
(29)

Find the indefinite integral. 3(w4)7dw\int \frac { 3 } { ( w - 4 ) ^ { 7 } } d w

(Multiple Choice)
4.9/5
(39)

 Use integration tables to find 1x236x225dx\text { Use integration tables to find } \int \frac { 1 } { x ^ { 2 } \sqrt{ 36 x ^ {2} - 25} } d x \text {. }

(Multiple Choice)
4.8/5
(32)

 Use integration tables to evaluate the integral 0163+x2dx\text { Use integration tables to evaluate the integral } \int _ { 0 } ^ { 1 } \sqrt { 63 + x ^ { 2 } } d x \text {. }

(Multiple Choice)
4.7/5
(27)

Use a table of integrals with forms involving the trigonometric functions to find the integral. 11+e5xdx\int \frac { 1 } { 1 + e ^ { 5 x } } d x

(Multiple Choice)
4.9/5
(38)

Find the indefinite integral. 6(x12)5dx\int 6 ( x - 12 ) ^ { 5 } d x

(Multiple Choice)
4.8/5
(34)

Find the indefinite integral. sin32xcos42xdx\int \sin ^ { 3 } 2 x \cos ^ { 4 } 2 x d x

(Multiple Choice)
4.8/5
(27)

Find the indefinite integral. 1x9+49x2dx\int \frac { 1 } { x \sqrt { 9 + 49 x ^ { 2 } } } d x

(Multiple Choice)
4.8/5
(35)

 Use integration tables to evaluate the integral 01x9ex10dx\text { Use integration tables to evaluate the integral } \int _ { 0 } ^ { 1 } x ^ { 9 } e ^ { x ^ { 10 } } d x \text {. }

(Multiple Choice)
4.8/5
(38)

 Evaluate the limx5x2+4x89x2+9 using L’Hoˆpital’s Rule if necessary. \text { Evaluate the } \lim _ { x \rightarrow \infty } \frac { 5 x ^ { 2 } + 4 x - 8 } { 9 x ^ { 2 } + 9 } \text { using L'Hôpital's Rule if necessary. }

(Multiple Choice)
4.7/5
(32)
Showing 101 - 120 of 127
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)