Exam 8: Basic Integration Rules

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

 Evaluate the limit limx82x2+2572x8 first by using techniques from Chapter 1\text { Evaluate the limit } \lim _ { x \rightarrow 8 } \frac { - 2 x ^ { 2 } + 25 - 72 } { x - 8 } \text { first by using techniques from Chapter } 1 then by using L'Hopital's Rule.

(Multiple Choice)
5.0/5
(39)

 Find e2x1e4xdx\text { Find } \int e ^ { 2 x } \sqrt { 1 - e ^ { 4 x } } d x

(Multiple Choice)
4.8/5
(43)

Find the indefinite integral. sec66xdx\int \sec ^ { 6 } 6 x d x

(Multiple Choice)
4.7/5
(38)

Write the form of the partial fraction decomposition for the following rational expression. 10x2+10x\frac { 10 } { x ^ { 2 } + 10 x }

(Multiple Choice)
4.9/5
(26)

 Evaluate the limit limx0+3(ex1x)10x3 using L’Hopital’s Rule if necessary. \text { Evaluate the limit } \lim _ { x \rightarrow 0 ^ { + } } \frac { 3 \left( e ^ { x } - 1 - x \right) } { 10 x ^ { 3 } } \text { using L'Hopital's Rule if necessary. }

(Multiple Choice)
4.8/5
(41)

Suppose a model for the ability M of a child to memorize, measured on a scale from 0 to 10 , is given by M=1+1.4tlnt,0<t4M = 1 + 1.4 t \ln t , 0 < t \leq 4 where tt is the child's age in years. Find the average value of this model between the child's first and second birthdays. Round your answer to three decimal places.

(Multiple Choice)
4.8/5
(33)

Find the indefinite integral. [r+5(r2)4]dr\int \left[ r + \frac { 5 } { ( r - 2 ) ^ { 4 } } \right] d r

(Multiple Choice)
4.8/5
(48)

 Use partial fractions to find x2+x+5x4+10x2+25dx\text { Use partial fractions to find } \int \frac { x ^ { 2 } + x + 5 } { x ^ { 4 } + 10 x ^ { 2 } + 25 } d x \text {. }

(Multiple Choice)
4.7/5
(38)

 Use substitution to find the integral ex(e2x+1)(ex3)dx\text { Use substitution to find the integral } \int \frac { e ^ { x } } { \left( e ^ { 2 x } + 1 \right) \left( e ^ { x } - 3 \right) } d x \text {. }

(Multiple Choice)
4.9/5
(39)

 Use integration tables to find the integral x4arctanx5/4dx\text { Use integration tables to find the integral } \int \sqrt [ 4 ] { x } \arctan x ^ { 5 / 4 } d x \text {. }

(Multiple Choice)
4.9/5
(44)

Find the definite integral. 56x225x2dx\int _ { 5 } ^ { 6 } \frac { \sqrt { x ^ { 2 } - 25 } } { x ^ { 2 } } d x

(Multiple Choice)
4.7/5
(36)

 Find the area between the x-axis and the graph of the function y=2x2+1\text { Find the area between the } x \text {-axis and the graph of the function } y = \frac { 2 } { x ^ { 2 } + 1 } \text {. } \text { Find the area between the } x \text {-axis and the graph of the function } y = \frac { 2 } { x ^ { 2 } + 1 } \text {. }

(Multiple Choice)
4.8/5
(32)

Find the definite integral. 03x2ex3dx\int _ { 0 } ^ { 3 } x ^ { 2 } e ^ { - x ^ { 3 } } d x

(Multiple Choice)
4.9/5
(29)

Find the indefinite integral. sec52xtan2xdx\int \sec ^ { 5 } 2 x \tan 2 x d x

(Multiple Choice)
4.8/5
(28)

Find the definite integral. 0128xx2+25dx\int _ { 0 } ^ { 12 } \frac { 8 x } { \sqrt { x ^ { 2 } + 25 } } d x

(Multiple Choice)
4.8/5
(35)

 Find the indefinite integral by making the substitution x=9sinθ\text { Find the indefinite integral by making the substitution } x = 9 \sin \theta \text {. } 9x281x2dx\int \frac { 9 } { x ^ { 2 } \sqrt { 81 - x ^ { 2 } } } d x

(Multiple Choice)
4.8/5
(30)

 Evaluate the definite integral 0π4sin7tcostdt\text { Evaluate the definite integral } \int _ { 0 } ^ { \pi } 4 \sin ^ { 7 } t \cos t d t \text {. }

(Multiple Choice)
4.9/5
(32)

 Evaluate the limit limx0arcsin(13x)2x using L’Hopital’s Rule if necessary. \text { Evaluate the limit } \lim _ { x \rightarrow 0 } \frac { \arcsin ( 13 x ) } { 2 x } \text { using L'Hopital's Rule if necessary. }

(Multiple Choice)
4.8/5
(36)

Evaluate the definite integral 01x2xx2+x+1dx\int _ { 0 } ^ { 1 } \frac { x ^ { 2 } - x } { x ^ { 2 } + x + 1 } d x

(Multiple Choice)
4.9/5
(29)

 Determine whether the improper integral 9112(x10)2dx diverges or converges. \text { Determine whether the improper integral } \int _ { 9 } ^ { 11 } \frac { 2 } { ( x - 10 ) ^ { 2 } } d x \text { diverges or converges. } Evaluate the integral if it converges.

(Multiple Choice)
4.9/5
(33)
Showing 41 - 60 of 127
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)