Exam 14: Directional Derivatives, Gradients, and Extrema

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The set of points on z=x23xy+y2z = x ^ { 2 } - 3 x y + y ^ { 2 } at which the tangent plane is parallel to the xy-plane is

(Multiple Choice)
4.7/5
(38)

Let f(x,y)=sin(x+y)+sinx+sinyf ( x , y ) = \sin ( x + y ) + \sin x + \sin y . Then f has a relative maximum at

(Multiple Choice)
4.9/5
(33)

The gradient of f(x,y,z)=y2+z24xzf ( x , y , z ) = y ^ { 2 } + z ^ { 2 } - 4 x z at (-2, 1, 3) is

(Multiple Choice)
4.7/5
(36)

The set of points on 4x2+y2+2z2=504 x ^ { 2 } + y ^ { 2 } + 2 z ^ { 2 } = 50 at which the tangent plane is parallel to the xy-plane is

(Multiple Choice)
4.8/5
(36)

Let f(x,y)=6x24yx2+2y3f ( x , y ) = 6 x - 24 y - x ^ { 2 } + 2 y ^ { 3 } . Then f has a relative maximum at

(Multiple Choice)
4.9/5
(31)

The gradient of f(x,y,z)=ztan1(yx)f ( x , y , z ) = z \tan ^ { - 1 } \left( \frac { y } { x } \right) at (1, 1, 3) is

(Multiple Choice)
5.0/5
(38)

Let w=x2+y2+z2w = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint x2+4y2=16x ^ { 2 } + 4 y ^ { 2 } = 16 . Then the minimum value of w is

(Multiple Choice)
4.9/5
(37)

An equation of the tangent plane to the surface y=excoszy = e ^ { x } \cos z at (1, e, 0) is

(Multiple Choice)
4.8/5
(32)

Let f(x,y)=x3+y26x2+y1f ( x , y ) = x ^ { 3 } + y ^ { 2 } - 6 x ^ { 2 } + y - 1 . Then f has a relative minimum at

(Multiple Choice)
4.9/5
(38)

Let f(x,y,z)=x2+4y2+16z2f ( x , y , z ) = x ^ { 2 } + 4 y ^ { 2 } + 16 z ^ { 2 } with constraint xyz = 1. Then f has a relative minimum at

(Multiple Choice)
4.8/5
(37)

Let f(x,y)=4xy+x2+2y2f ( x , y ) = 4 x y + x ^ { 2 } + 2 y ^ { 2 } . Then the maximum value of the directional derivative Duf(2,1)D _ { \mathrm { u } } f ( 2,1 ) is

(Multiple Choice)
4.9/5
(38)

The symmetric equations of the normal line to the surface 16z=4x2+y216 z = 4 x ^ { 2 } + y ^ { 2 } at (2, 4, 2) are

(Multiple Choice)
4.9/5
(23)

The absolute maximum of f(x,y)=2x2+y24x4y+1f ( x , y ) = 2 x ^ { 2 } + y ^ { 2 } - 4 x - 4 y + 1 on or inside the triangle with vertices (0,0), (1,2), and (0,2) is

(Multiple Choice)
4.7/5
(36)

Let f(x,y)=xyx2+y2f ( x , y ) = \frac { x y } { x ^ { 2 } + y ^ { 2 } } . Then the maximum value of the directional derivative Duf(1,2)D _ { \mathrm { u } } f ( - 1,2 ) is

(Multiple Choice)
4.8/5
(29)

Let f(x,y,z)=x2+y2+z2f ( x , y , z ) = \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } . Then the maximum value of the directional derivative Duf(3,4,0)D _ { \mathrm { u } } f ( 3,4,0 ) is

(Multiple Choice)
4.7/5
(43)

Let f(x,y)=xyf ( x , y ) = x y with constraint 3x2+y2=63 x ^ { 2 } + y ^ { 2 } = 6 . Then f has a relative minimum at

(Multiple Choice)
4.8/5
(39)

The absolute minimum of f(x,y)=2x2+y24x4y+1f ( x , y ) = 2 x ^ { 2 } + y ^ { 2 } - 4 x - 4 y + 1 on or inside the triangle with vertices (0,0), (1,2), and (0,2) is

(Multiple Choice)
4.7/5
(31)

Let f(x,y,z)=x2+4y2+16z2f ( x , y , z ) = x ^ { 2 } + 4 y ^ { 2 } + 16 z ^ { 2 } with constraint x = 1. Then f has a relative minimum at

(Multiple Choice)
4.7/5
(33)

The symmetric equations of the normal line to the surface x23y24z2=2x ^ { 2 } - 3 y ^ { 2 } - 4 z ^ { 2 } = 2 at (3, 1, 1) are

(Multiple Choice)
4.8/5
(37)

The symmetric equations of the normal line to the surface 3z=x2+y223 z = x ^ { 2 } + y ^ { 2 } - 2 at (-2, -4, 6) are

(Multiple Choice)
4.9/5
(25)
Showing 61 - 80 of 80
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)