Exam 14: Directional Derivatives, Gradients, and Extrema

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Let f(x,y)=2x4+y2x22yf ( x , y ) = 2 x ^ { 4 } + y ^ { 2 } - x ^ { 2 } - 2 y . Then, the set of saddle points of f is

(Multiple Choice)
4.8/5
(38)

Let f(x,y)=x3+y3+3y23x9y+2f ( x , y ) = x ^ { 3 } + y ^ { 3 } + 3 y ^ { 2 } - 3 x - 9 y + 2 . Then f has a relative minimum at

(Multiple Choice)
4.8/5
(39)

Let f(x,y)=xey+yexf ( x , y ) = x e ^ { y } + y e ^ { x } Then the directional derivative of f at (0,0) in the direction of the unit vector U\mathbf { U } which makes an angle of π6\frac { \pi } { 6 } from the positive x-axis is

(Multiple Choice)
4.9/5
(43)

Let f(x,y)=2xlnyf ( x , y ) = 2 x \ln y Then the maximum value of the directional derivative Duf(4,1)D _ { \mathrm { u } } f ( 4,1 ) is

(Multiple Choice)
4.9/5
(34)

The symmetric equations of the normal line to the surface zx2xy2yz2=18z x ^ { 2 } - x y ^ { 2 } - y z ^ { 2 } = 18 at (0, -2, 3) are

(Multiple Choice)
4.9/5
(29)

An equation of the tangent plane to the surface x+y+z=4\sqrt { x } + \sqrt { y } + \sqrt { z } = 4 at (1, 1, 4) is

(Multiple Choice)
4.8/5
(31)

Let f(x,y,z)=x2y2f ( x , y , z ) = x ^ { 2 } - y ^ { 2 } with constraint x2+2y2+3z2=1x ^ { 2 } + 2 y ^ { 2 } + 3 z ^ { 2 } = 1 . Then f has a relative minimum at

(Multiple Choice)
4.9/5
(36)

An equation of the tangent plane to the surface 4x2+y2+2z2=264 x ^ { 2 } + y ^ { 2 } + 2 z ^ { 2 } = 26 at (1, -2, 3) is

(Multiple Choice)
4.9/5
(29)

Let f(x,y)=1x64y+xyf ( x , y ) = \frac { 1 } { x } - \frac { 64 } { y } + x y . Then f has a relative maximum at

(Multiple Choice)
4.8/5
(43)

Let f(x,y,z)=x+y+zf ( x , y , z ) = x + y + z with constraint x2+y2+z2=9x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 . Then f has a relative minimum at

(Multiple Choice)
4.8/5
(23)

Let f(x,y,z)=x2+y2+z2f ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint xyz = 1. Then f has a relative minimum at

(Multiple Choice)
4.8/5
(39)

Let f(x,y)=x2+y3f ( x , y ) = x ^ { 2 } + y ^ { 3 } . Then f has a relative minimum at

(Multiple Choice)
4.9/5
(31)

The symmetric equations of the normal line to the surface x+y+z=4\sqrt { x } + \sqrt { y } + \sqrt { z } = 4 at (1, 1, 4) are

(Multiple Choice)
4.7/5
(34)

Let f(x,y)=2x+2y+1x2+y2+1f ( x , y ) = \frac { 2 x + 2 y + 1 } { x ^ { 2 } + y ^ { 2 } + 1 } . Then f has a relative maximum at

(Multiple Choice)
4.9/5
(35)

Let f(x,y,z)=x+y+zf ( x , y , z ) = x + y + z with constraint x2+y2+z2=9x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 . Then f has a relative maximum at

(Multiple Choice)
4.9/5
(34)

The absolute maximum of f(x,y)=x2+y2+xy6xf ( x , y ) = x ^ { 2 } + y ^ { 2 } + x y - 6 x on or inside the rectangle with vertices (0, -3), (5, -3), (5, 3), and (0, 3) is

(Multiple Choice)
4.9/5
(38)

Let f(x,y)=x2+y2f ( x , y ) = x ^ { 2 } + y ^ { 2 } with constraint 3x+y=33 x + y = 3 . Then f has a relative minimum at

(Multiple Choice)
4.9/5
(32)

Let w=x2+y2+z2w = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint 9x2+4y2+z2=369 x ^ { 2 } + 4 y ^ { 2 } + z ^ { 2 } = 36 . Then the minimum value of w is

(Multiple Choice)
4.9/5
(41)

The symmetric equations of the normal line to the surface 4x2+y2+2z2=264 x ^ { 2 } + y ^ { 2 } + 2 z ^ { 2 } = 26 at (1, -2, 3) are

(Multiple Choice)
4.9/5
(43)

The symmetric equations of the normal line to the surface x23+y23+z23=14x ^ { \frac { 2 } { 3 } } + y ^ { \frac { 2 } { 3 } } + z ^ { \frac { 2 } { 3 } } = 14 at (-8, 27, 1) are

(Multiple Choice)
4.9/5
(29)
Showing 21 - 40 of 80
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)