Exam 14: Directional Derivatives, Gradients, and Extrema

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The absolute maximum of f(x,y)=88x+114y2x23y24xyf ( x , y ) = 88 x + 114 y - 2 x ^ { 2 } - 3 y ^ { 2 } - 4 x y on the set {(x,y):0x50,0y1253}\left\{ ( x , y ) : 0 \leq x \leq 50,0 \leq y \leq \frac { 125 } { 3 } \right\} is

(Multiple Choice)
4.9/5
(37)

Let f(x,y)=x3+y3+3y23x9y+2f ( x , y ) = x ^ { 3 } + y ^ { 3 } + 3 y ^ { 2 } - 3 x - 9 y + 2 . Then f has a relative maximum at

(Multiple Choice)
4.7/5
(28)

Let f(x,y)=4xy22x2yxf ( x , y ) = 4 x y ^ { 2 } - 2 x ^ { 2 } y - x . Then the set of saddle point(s) of f is

(Multiple Choice)
4.8/5
(40)

The gradient of f(x,y,z)=2x3+xy2+z2xf ( x , y , z ) = 2 x ^ { 3 } + x y ^ { 2 } + z ^ { 2 } x at (1, 1, 1) is

(Multiple Choice)
4.7/5
(35)

Let w=(x1)2+(y3)2+z2w = ( x - 1 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + z ^ { 2 } with constraint 4x+2yz=54 x + 2 y - z = 5 . Then the minimum value of w is

(Multiple Choice)
4.9/5
(29)

Let f(x,y)=x2y+y2f ( x , y ) = x ^ { 2 } y + y ^ { 2 } and u=12i+32j\mathbf { u } = \frac { 1 } { 2 } \mathbf { i } + \frac { \sqrt { 3 } } { 2 } \mathbf { j } Then the directional derivative of f at (-1, 2) in the direction of U\mathbf { U } is

(Multiple Choice)
5.0/5
(33)

Let w=(x1)2+(y+1)2+(z+1)2w = ( x - 1 ) ^ { 2 } + ( y + 1 ) ^ { 2 } + ( z + 1 ) ^ { 2 } with constraint x+4y+3z=2x + 4 y + 3 z = 2 . Then the minimum value of w is

(Multiple Choice)
4.9/5
(40)

Let f(x,y)=lnx2+y2f ( x , y ) = \ln \sqrt { x ^ { 2 } + y ^ { 2 } } . Then the directional derivative of f at (3,4) in the direction of the unit vector U\mathbf { U } which is parallel to v=5i+12j\mathbf { v } = 5 \mathbf { i } + 12 \mathbf { j } is

(Multiple Choice)
4.9/5
(40)

The gradient of f(x,y,z)=x2yxyz2f ( x , y , z ) = x ^ { 2 } y - x y z ^ { 2 } at (0, 1, 2) is

(Multiple Choice)
4.7/5
(34)

Let w=x2+y2+z2w = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint x+y+z=1x + y + z = 1 . Then the maximum value of w is

(Multiple Choice)
4.7/5
(37)

Let f(x,y)=x2+yf ( x , y ) = x ^ { 2 } + y with constraint x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 . Then f has a relative minimum at

(Multiple Choice)
4.9/5
(36)

An equation of the tangent plane to the surface 3z=x2+y223 z = x ^ { 2 } + y ^ { 2 } - 2 at (-2, -4, 6) is

(Multiple Choice)
4.8/5
(35)

The symmetric equations of the normal line to the surface y=excoszy = e ^ { x } \cos z at (1, e, 0) are

(Multiple Choice)
4.9/5
(27)

Let f(x,y,z)=x2y+y2z+z2xf ( x , y , z ) = x ^ { 2 } y + y ^ { 2 } z + z ^ { 2 } x Then the directional derivative of f at P=(1,2,1)P = ( 1,2 , - 1 ) in the direction of the unit vector u\mathbf { u } which is parallel to PQ\overrightarrow { P Q } where Q=(2,0,1)Q = ( 2,0,1 ) is

(Multiple Choice)
4.8/5
(39)

Let f(x,y,z)=xyzf ( x , y , z ) = x y z with constraint 2xy+3xz+yz=722 x y + 3 x z + y z = 72 . Then f has a relative maximum at

(Multiple Choice)
4.8/5
(37)

The absolute minimum of f(x,y)=2x+2yx2y2+2f ( x , y ) = 2 x + 2 y - x ^ { 2 } - y ^ { 2 } + 2 on or inside the triangle with vertices (0, 0), (9, 0), and (0,9) is

(Multiple Choice)
4.7/5
(35)

Let f(x,y)=2x+2y+1x2+y2+1f ( x , y ) = \frac { 2 x + 2 y + 1 } { x ^ { 2 } + y ^ { 2 } + 1 } . Then f has a relative minimum at

(Multiple Choice)
4.7/5
(40)

Let f(x,y)=xy2+x2f ( x , y ) = x y ^ { 2 } + x ^ { 2 } . Then the maximum value of the directional derivative Duf(1,2)D _ { \mathrm { u } } f ( - 1,2 ) is

(Multiple Choice)
4.8/5
(27)

Let f(x,y,z)=x2+4y2+16z2f ( x , y , z ) = x ^ { 2 } + 4 y ^ { 2 } + 16 z ^ { 2 } with constraint xy = 1. Then f has a relative minimum at

(Multiple Choice)
4.8/5
(37)

The gradient of f(x,y,z)=x2+y2+z2f ( x , y , z ) = \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } at (3, 0, -4) is

(Multiple Choice)
4.9/5
(40)
Showing 41 - 60 of 80
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)