Exam 25: Direct-Current Circuits
Exam 1: Units, Physical Quantities, and Vectors107 Questions
Exam 2: Motion Along a Straight Line59 Questions
Exam 3: Motion in Two or Three Dimensions50 Questions
Exam 4: Newtons Laws of Motion44 Questions
Exam 5: Applying Newtons Laws95 Questions
Exam 6: Work and Kinetic Energy54 Questions
Exam 7: Potential Energy and Energy Conservation55 Questions
Exam 8: Momentum, Impulse, and Collisions50 Questions
Exam 9: Rotation of Rigid Bodies26 Questions
Exam 10: Equilibrium and Elasticity50 Questions
Exam 11: Fluid Mechanics50 Questions
Exam 12: Gravitation50 Questions
Exam 13: Periodic Motion50 Questions
Exam 14: Mechanical Waves44 Questions
Exam 15: Sound and Hearing66 Questions
Exam 16: Temperature and Heat63 Questions
Exam 17: Thermal Properties of Matter58 Questions
Exam 18: The First Law of Thermodynamics52 Questions
Exam 19: The Second Law of Thermodynamics50 Questions
Exam 20: Electric Charge and Electric Field58 Questions
Exam 21: Gausss Law41 Questions
Exam 22: Electric Potential55 Questions
Exam 23: Capacitance and Dielectrics52 Questions
Exam 24: Current, Resistance, and Electromotive Force50 Questions
Exam 25: Direct-Current Circuits53 Questions
Exam 26: Magnetic Field and Magnetic Forces36 Questions
Exam 27: Sources of Magnetic Field51 Questions
Exam 28: Electromagnetic Induction39 Questions
Exam 29: Inductance26 Questions
Exam 30: Alternating Current49 Questions
Exam 31: Electromagnetic Waves47 Questions
Exam 32: The Nature and Propagation of Light28 Questions
Exam 33: Geometric Optics81 Questions
Exam 34: Interference33 Questions
Exam 35: Diffraction49 Questions
Exam 36: Relativity51 Questions
Exam 37: Photons: Light Waves Behaving As Particles38 Questions
Exam 38: Particles Behaving As Waves52 Questions
Exam 39: Quantum Mechanics40 Questions
Exam 40: Atomic Structure41 Questions
Exam 41: Molecules and Condensed Matter31 Questions
Exam 42: Nuclear Physics89 Questions
Exam 43: Particle Physics and Cosmology44 Questions
Select questions type
For the circuit shown in the figure, the switch S is initially open and the capacitor voltage is 80 V. The switch is then closed at time t = 0. How long after closing the switch will the current in the resistor be 7.0 µA? 

(Multiple Choice)
5.0/5
(40)
Two light bulbs, B1 and B2, are connected to a battery having appreciable internal resistance as shown in the figure. What happens to the brightness of bulb B1 when we close the switch S? 

(Multiple Choice)
4.8/5
(40)
A 4.0-mF capacitor is discharged through a 4.0-kΩ resistor. How long will it take for the capacitor to lose half its initial stored energy?
(Multiple Choice)
4.9/5
(42)
In the circuit shown in the figure, all the lightbulbs are identical. Which of the following is the correct ranking of the brightness of the bulbs? 

(Multiple Choice)
4.9/5
(42)
An RC circuit is connected across an ideal DC voltage source through an open switch. The switch is closed at time t = 0 s. Which of the following statements regarding the circuit are correct? (There may be more than one correct choice.)
(Multiple Choice)
4.7/5
(40)
Thirteen resistors are connected across points A and B as shown in the figure. If all the resistors are accurate to 2 significant figures, what is the equivalent resistance between points A and B? 

(Multiple Choice)
4.8/5
(42)
In the circuit shown in the figure, an ideal ohmmeter is connected across ab with the switch S open. All the connecting leads have negligible resistance. The reading of the ohmmeter will be closest to 

(Multiple Choice)
5.0/5
(40)
A galvanometer coil having a resistance of 20 Ω and a full-scale deflection at 1.0 mA is connected in series with a 4980 Ω resistance to build a voltmeter. What is the maximum voltage that this voltmeter can read?
(Multiple Choice)
4.8/5
(34)
An uncharged 30.0-µF capacitor is connected in series with a 25.0-Ω resistor, a DC battery, and an open switch. The battery has an internal resistance of 10.0 Ω and the open-circuit voltage across its terminals is 50.0 V. The leads have no appreciable resistance. At time t = 0, the switch is suddenly closed.
(a) What is the maximum current through the 25.0-Ω resistor and when does it occur (immediately after closing the switch or after the switch has been closed for a long time)?
(b) What is the maximum charge that the capacitor receives?
(c) When the current in the circuit is 0.850 A, how much charge is on the plates of the capacitor?
(Short Answer)
4.8/5
(30)
When a 20.0-ohm resistor is connected across the terminals of a 12.0-V battery, the voltage across the terminals of the battery falls by 0.300 V. What is the internal resistance of this battery?
(Multiple Choice)
4.8/5
(41)
A light bulb is connected in the circuit shown in the figure with the switch S open. All the connecting leads have no appreciable resistance and the battery has no internal resistance. When we close the switch, which statements below accurately describe the behavior of the circuit? (There may be more than one correct choice.) 

(Multiple Choice)
4.8/5
(36)
A galvanometer with a resistance of 40.0 Ω deflects full scale at a current of 2.0 mA. What resistance should be used with this galvanometer in order to construct a voltmeter that can read a maximum of 50 V?
(Multiple Choice)
4.9/5
(48)
A light bulb is connected in the circuit shown in the figure with the switch S open and the capacitor uncharged. The battery has no appreciable internal resistance. Which one of the following graphs best describes the brightness B of the bulb as a function of time t after closing the switch?



(Multiple Choice)
4.9/5
(42)
Showing 41 - 53 of 53
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)