Exam 9: Sequences

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Suppose you go to work at a company that pays $0.08 for the first day, $0.16 for the second day, $0.32 for the third day, and so on. If the daily wage keeps doubling, what would your Total income be for working 29 days? Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(44)

Find the fourth degree Taylor polynomial centered at c=7c = 7 for the function. f(x)=lnxf ( x ) = \ln x

(Multiple Choice)
4.7/5
(43)

 Use the series n=0(1)nx2n+12n+1 for f(x)=arctanx to approximate the value of \text { Use the series } \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 2 n + 1 } } { 2 n + 1 } \text { for } f ( x ) = \arctan x \text { to approximate the value of } arctan18\arctan \frac { 1 } { 8 } using RN0.001R _ { N } \leq 0.001 . Round your answer to three decimal places.

(Multiple Choice)
4.9/5
(32)

Find the sum of the convergent series n=0(16n17n)\sum _ { n = 0 } ^ { \infty } \left( \frac { 1 } { 6 ^ { n } } - \frac { 1 } { 7 ^ { n } } \right)

(Multiple Choice)
4.8/5
(33)

Use the Integral Test to determine the convergence or divergence of the series. n=210nlnn\sum _ { n = 2 } ^ { \infty } \frac { 10 } { n \sqrt { \ln n } }

(Multiple Choice)
4.9/5
(33)

Determine the convergence or divergence of the series. 8n=11n1.158 \cdot \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 1.15 } }

(Multiple Choice)
4.9/5
(35)

Find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.) n=0(x6)n\sum _ { n = 0 } ^ { \infty } \left( \frac { x } { 6 } \right) ^ { n }

(Multiple Choice)
4.8/5
(39)

Use the Root Test to determine the convergence or divergence of the series. n=1(7n2+110n21)n\sum _ { n = 1 } ^ { \infty } \left( \frac { 7 n ^ { 2 } + 1 } { 10 n ^ { 2 } - 1 } \right) ^ { n }

(Multiple Choice)
4.8/5
(37)

Suppose the annual spending by tourists in a resort city is $100 million. Approximately 75% of that revenue is again spent in the resort city, and of that amount approximately 75% is again spent in the same city, and so on. Summing all of this spending indefinitely, leads to the geometric series i=0100(0.75i)\sum _ { i = 0 } ^ { \infty } 100 \left( 0.75 ^ { i } \right) . Find the sum of this series.

(Multiple Choice)
4.8/5
(37)

Use the Direct Comparison Test (if possible) to determine whether the series n=91n5/68\sum _ { n = 9 } ^ { \infty } \frac { 1 } { n ^ { 5 / 6 } - 8 }

(Multiple Choice)
4.9/5
(39)

Use the Limit Comparison Test to determine the convergence or divergence of the series n=12sin1n\sum _ { n = 1 } ^ { \infty } 2 \sin \frac { 1 } { n } .

(Multiple Choice)
4.8/5
(36)

Suppose the winner of a $4,000,000 sweepstakes will be paid $100,000 per year for 40 years, starting a year from now. The money earns 5% interest per year. The present value of the winnings is n=140100,000(11.05)n\sum _ { n = 1 } ^ { 40 } 100,000 \left( \frac { 1 } { 1.05 } \right) ^ { n } . Compute the present value using the formula for the nn th partial sum of a geometric series. Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(30)

 Use a graphing utility to graph f(x)=12x3 and P1, a first-degree polynomial \text { Use a graphing utility to graph } f ( x ) = \frac { 12 } { \sqrt [ 3 ] { x } } \text { and } P _ { 1 } \text {, a first-degree polynomial } function whose value and slope agree with the value and slope of f at .

(Multiple Choice)
4.8/5
(35)

 Graph the sequence an=4(1)n\text { Graph the sequence } a _ { n } = 4 ( - 1 ) ^ { n } \text {. }

(Multiple Choice)
4.8/5
(31)

Use the Direct Comparison Test to determine the convergence or divergence of the series n=117n2+9\sum _ { n = 1 } ^ { \infty } \frac { 1 } { 7 n ^ { 2 } + 9 } .

(Multiple Choice)
4.7/5
(33)

Find a geometric power series for the function 17x centered at 0\frac { 1 } { 7 - x } \text { centered at } 0 \text {. }

(Multiple Choice)
4.8/5
(35)

 Consider the function given by f(x)=n=1(1)n+1(x7)nn. Find the interval of \text { Consider the function given by } f ( x ) = \sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n + 1 } ( x - 7 ) ^ { n } } { n } \text {. Find the interval of } convergence for f(x)dx\int f ( x ) d x .

(Multiple Choice)
4.8/5
(35)

The series n=16n4n2+1 diverges. \text {The series } \sum _ { n = 1 } ^ { \infty } \frac { 6 n } { 4 n ^ { 2 } + 1 } \text { diverges. }

(True/False)
4.7/5
(33)

Use the Ratio Test to determine the convergence or divergence of the series. n=1n(310)n\sum _ { n = 1 } ^ { \infty } n \left( \frac { 3 } { 10 } \right) ^ { n }

(Multiple Choice)
4.8/5
(39)
Showing 161 - 179 of 179
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)