Exam 9: Sequences

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

 Write an expression for the nth term of the sequence 10,22,34,46,\text { Write an expression for the } n \text {th term of the sequence } 10,22,34,46 , \ldots \text {. }

(Multiple Choice)
4.8/5
(36)

 What is P1, a first-degree polynomial function whose value and slope agree with the \text { What is } P _ { 1 } \text {, a first-degree polynomial function whose value and slope agree with the } value and slope of f(x)=10tan(x)f ( x ) = 10 \tan ( x ) at x=π4x = \frac { \pi } { 4 } ?

(Multiple Choice)
4.9/5
(36)

Use the Root Test to determine the convergence or divergence of the series n=1116n\sum _ { n = 1 } ^ { \infty } \frac { 1 } { 16 ^ { n } }

(Multiple Choice)
4.7/5
(38)

Use the Limit Comparison Test to determine the convergence or divergence of the series n=13n+18n+1\sum _ { n = 1 } ^ { \infty } \frac { 3 ^ { n } + 1 } { 8 ^ { n } + 1 } .

(Multiple Choice)
4.8/5
(43)

The series ln24+ln36+ln48+ln510+ln612+ converges. \text {The series } \frac { \ln 2 } { 4 } + \frac { \ln 3 } { 6 } + \frac { \ln 4 } { 8 } + \frac { \ln 5 } { 10 } + \frac { \ln 6 } { 12 } + \cdots \text { converges. }

(True/False)
4.7/5
(33)

 Use the power series 11+x=n=0(1)nxn to determine a power series centered at 0\text { Use the power series } \frac { 1 } { 1 + x } = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } x ^ { n } \text { to determine a power series centered at } 0 for the function g(x)=111x2+1g ( x ) = \frac { 1 } { 11 x ^ { 2 } + 1 } .

(Multiple Choice)
4.7/5
(39)

 Write the repeating decimal 0.75 as a geometric series. \text { Write the repeating decimal } 0 . \overline { 75 } \text { as a geometric series. }

(Multiple Choice)
4.8/5
(43)

 Determine the convergence or divergence of the series n=1cosn10n using any \text { Determine the convergence or divergence of the series } \sum _ { n = 1 } ^ { \infty } \frac { \cos n } { 10 ^ { n } } \text { using any } appropriate test.

(Multiple Choice)
4.7/5
(38)

Use the Limit Comparison Test to determine the convergence or divergence of the series n=19nn2+6\sum _ { n = 1 } ^ { \infty } \frac { 9 } { n \sqrt { n ^ { 2 } + 6 } } .

(Multiple Choice)
4.9/5
(42)

 Consider the function given by f(x)=n=1(1)n+1(x6)nn. Find the interval of \text { Consider the function given by } f ( x ) = \sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n + 1 } ( x - 6 ) ^ { n } } { n } \text {. Find the interval of } convergence for f(x)f ^ { \prime } ( x ) .

(Multiple Choice)
4.8/5
(46)

Determine the convergence or divergence of the series using any appropriate test from this chapter. Identify the test used. n=1(1)n97n\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } 9 } { 7 n }

(Multiple Choice)
4.8/5
(31)

 The terms of a series n=1an are defined recursively. Determine the convergence or \text { The terms of a series } \sum _ { n = 1 } ^ { \infty } a _ { n } \text { are defined recursively. Determine the convergence or } divergence of the series. Explain your reasoning. a1=6,an+1=4n13n2ana _ { 1 } = 6 , a _ { n + 1 } = \frac { 4 n - 1 } { - 3 n - 2 } a _ { n }

(Multiple Choice)
4.9/5
(35)

The series n=1(1)n(6n+3)!\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { ( 6 n + 3 ) ! } converges

(True/False)
4.9/5
(40)

 Find a power series for the function 112x centered at 1\text { Find a power series for the function } \frac { 1 } { 12 - x } \text { centered at } 1 \text {. }

(Multiple Choice)
4.9/5
(36)

Use the Ratio Test to determine the convergence or divergence of the series n=0(1)n(7)8n(7n+1)!\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } ( 7 ) ^ { 8 n } } { ( 7 n + 1 ) ! }

(Multiple Choice)
4.7/5
(31)

Determine the minimal number of terms required to approximate the sum of the series with an error of less than 0.005. n=0(1)n(2n)!\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { ( 2 n ) ! }

(Multiple Choice)
4.8/5
(34)

Use the Limit Comparison Test (if possible) to determine whether the series n=12n277n7+3n+2\sum _ { n = 1 } ^ { \infty } \frac { 2 n ^ { 2 } - 7 } { 7 n ^ { 7 } + 3 n + 2 } converges or diverges.

(Multiple Choice)
4.9/5
(38)

Use the binomial series to find the Maclaurin series for the function f(x)=8(1+x)2f ( x ) = \frac { 8 } { ( 1 + x ) ^ { 2 } }

(Multiple Choice)
4.8/5
(31)

Determine the convergence or divergence of the sequence with the given nth term. If the sequence converges, find its limit. an=ln(n3)7na _ { n } = \frac { \ln \left( n ^ { 3 } \right) } { 7 n }

(Multiple Choice)
4.8/5
(37)

Find the Maclaurin polynomial of degree 4 for the function. f(x)=e9xf ( x ) = e ^ { 9 x }

(Multiple Choice)
4.9/5
(32)
Showing 41 - 60 of 179
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)