Exam 9: Sequences

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the Limit Comparison Test to determine the convergence or divergence of the series n=61n76\sum _ { n = 6 } ^ { \infty } \frac { 1 } { n ^ { 7 } - 6 } .

(Multiple Choice)
4.8/5
(37)

 If the rate of inflation is 312% per year and the average price of a car is currently \text { If the rate of inflation is } 3 \frac { 1 } { 2 } \% \text { per year and the average price of a car is currently } $40,000\$ 40,000 , the average price after nn years is Pn=$40,000(1.035)nP _ { n } = \$ 40,000 ( 1.035 ) ^ { n } . Compute the average price after 6 years. Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(41)

Find a first-degree polynomial function P1 whose value and slope agree with the value and slope of ff at x=cx = c . What is P1P _ { 1 } called? f(x)=4x3,c=27f ( x ) = \frac { 4 } { \sqrt [ 3 ] { x } } , c = 27

(Multiple Choice)
4.8/5
(29)

Find the radius of convergence of the power series. n=0(1)nxn5n\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } x ^ { n } } { 5 ^ { n } }

(Multiple Choice)
4.9/5
(40)

The series n=11(6n+7)3 converges. \text {The series } \sum _ { n = 1 } ^ { \infty } \frac { 1 } { ( 6 n + 7 ) ^ { 3 } } \text { converges. }

(True/False)
4.8/5
(33)

 Find the sum of the convergent series 81+18164+\text { Find the sum of the convergent series } 8 - 1 + \frac { 1 } { 8 } - \frac { 1 } { 64 } + \cdots \cdots

(Multiple Choice)
4.8/5
(40)

Use the Direct Comparison Test (if possible) to determine whether the series n=12n8n+1\sum _ { n = 1 } ^ { \infty } \frac { 2 ^ { n } } { 8 ^ { n } + 1 } converges or diverges.

(Multiple Choice)
4.9/5
(42)

Use Theorem 9.11 to determine the convergence or divergence of the series. 1+1223+1323+1423+1523+1 + \frac { 1 } { \sqrt [ 3 ] { 2 ^ { 2 } } } + \frac { 1 } { \sqrt [ 3 ] { 3 ^ { 2 } } } + \frac { 1 } { \sqrt [ 3 ] { 4 ^ { 2 } } } + \frac { 1 } { \sqrt [ 3 ] { 5 ^ { 2 } } } + \cdots

(Multiple Choice)
4.8/5
(33)

 Use the polynomial test to determine whether the series 120+223+328+435+544\text { Use the polynomial test to determine whether the series } \frac { 1 } { 20 } + \frac { 2 } { 23 } + \frac { 3 } { 28 } + \frac { 4 } { 35 } + \frac { 5 } { 44 } \ldots converges or diverges.

(Multiple Choice)
4.9/5
(26)

Use the Direct Comparison Test (if possible) to determine whether the series n=517n2+4\sum _ { n = 5 } ^ { \infty } \frac { 1 } { 7 n ^ { 2 } + 4 } converges or diverges.

(Multiple Choice)
4.9/5
(37)

Use a power series to approximate the value of the integral ex4dx with an error of \int e ^ { - x ^ { 4 } } d x \text { with an error of } less than 0.01. Round your answer to two decimal places.

(Multiple Choice)
4.7/5
(38)

Identify the most appropriate test to be used to determine whether the series n=115(1)n+1n\sum _ { n = 1 } ^ { \infty } \frac { 15 ( - 1 ) ^ { n + 1 } } { n } converges or diverges.

(Multiple Choice)
4.7/5
(36)

 Consider the function f(x)=20x, and its second-degree polynomial \text { Consider the function } f ( x ) = \frac { 20 } { \sqrt { x } } \text {, and its second-degree polynomial } P2(x)=2010(x1)+152(x1)2P _ { 2 } ( x ) = 20 - 10 ( x - 1 ) + \frac { 15 } { 2 } ( x - 1 ) ^ { 2 } at x=0.8x = 0.8 . Compute the value of f(0.8)f ( 0.8 ) and P2(0.8)P _ { 2 } ( 0.8 ) . Round your answer to four decimal places.

(Multiple Choice)
4.8/5
(33)

Use the definition to find the Taylor series (centered at c) for the function. f(x)=e2x,c=0f ( x ) = e ^ { 2 x } , c = 0

(Multiple Choice)
4.7/5
(36)

Use Theorem 9.11 to determine the convergence or divergence of the series. n=1259\sum _ { n = 1 } ^ { \infty } \frac { 2 } { \frac { 5 } { 9 } }

(Multiple Choice)
4.8/5
(37)

 State where the power series n=1(x2)nn3 is centered. \text { State where the power series } \sum _ { n = 1 } ^ { \infty } \frac { ( x - 2 ) ^ { n } } { n ^ { 3 } } \text { is centered. }

(Multiple Choice)
4.9/5
(33)

Find the Maclaurin polynomial of degree 3 for the function. f(x)=e9xf ( x ) = e ^ { - 9 x }

(Multiple Choice)
4.8/5
(36)

Find the Maclaurin polynomial of degree 5 for the function. f(x)=sin(2x)f ( x ) = \sin ( 2 x )

(Multiple Choice)
4.8/5
(40)

The series n=1(1)n+1n6n+4 converges. \text {The series } \sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n + 1 } n } { 6 n + 4 } \text { converges. }

(True/False)
4.9/5
(38)

Determine the convergence or divergence of the series. n=14nn8\sum _ { n = 1 } ^ { \infty } \frac { 4 } { n \cdot \sqrt [ 8 ] { n } }

(Multiple Choice)
4.8/5
(39)
Showing 61 - 80 of 179
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)