Exam 9: Sequences

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the fourth degree Maclaurin polynomial for the function. f(x)=1x+4f ( x ) = \frac { 1 } { x + 4 }

(Multiple Choice)
4.8/5
(43)

Determine the convergence or divergence of the series using any appropriate test from this chapter. Identify the test used. n=16nn+9\sum _ { n = 1 } ^ { \infty } \frac { 6 n } { n + 9 }

(Multiple Choice)
4.7/5
(35)

 Write an equivalent series of the series n=0xnn! with the index of summation \text { Write an equivalent series of the series } \sum _ { n = 0 } ^ { \infty } \frac { x ^ { n } } { n ! } \text { with the index of summation } beginning at n=5n = 5 .

(Multiple Choice)
4.8/5
(38)

Find the sum of the convergent series n=0(1)n142n+1(2n+1)\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { 1 } { 4 ^ { 2 n + 1 } ( 2 n + 1 ) } by using a well-known function. Round your answer to four decimal places.

(Multiple Choice)
4.7/5
(43)

Use the definition to find the Taylor series centered at c=0 for the function c = 0 \text { for the function } f(x)=sin4xf ( x ) = \sin 4 x

(Multiple Choice)
4.9/5
(35)

Find the radius of convergence of the power series. n=0(8x)2n(2n)!\sum _ { n = 0 } ^ { \infty } \frac { ( 8 x ) ^ { 2 n } } { ( 2 n ) ! }

(Multiple Choice)
4.8/5
(35)

Find the values of xx for which the series n=05(x4)n\sum _ { n = 0 } ^ { \infty } 5 \left( \frac { x } { 4 } \right) ^ { n } converges.

(Multiple Choice)
4.8/5
(41)

 Use the power series 11+x=n=0(1)nxn to determine a power series centered at 0\text { Use the power series } \frac { 1 } { 1 + x } = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } x ^ { n } \text { to determine a power series centered at } 0 for the function f(x)=8(8x+1)2=ddx[18x+1]f ( x ) = - \frac { 8 } { ( 8 x + 1 ) ^ { 2 } } = \frac { d } { d x } \left[ \frac { 1 } { 8 x + 1 } \right]

(Multiple Choice)
4.7/5
(34)

Match the sequence with its graph. an=4(1)nna _ { n } = \frac { 4 ( - 1 ) ^ { n } } { n }

(Multiple Choice)
4.8/5
(32)

Find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.) n=1(x4)n14n1\sum _ { n = 1 } ^ { \infty } \frac { ( x - 4 ) ^ { n - 1 } } { 4 ^ { n - 1 } }

(Multiple Choice)
4.8/5
(49)

Use the Direct Comparison Test to determine the convergence or divergence of the series n=0en6\sum _ { n = 0 } ^ { \infty } e ^ { - n ^ { 6 } } .

(Multiple Choice)
4.8/5
(39)

Find the Maclaurin series for the function f(x)=sin7xf ( x ) = \sin 7 x

(Multiple Choice)
4.7/5
(36)

Find the third degree Taylor polynomial centered at c=1c = 1 for the function. f(x)=xf ( x ) = \sqrt { x }

(Multiple Choice)
4.7/5
(39)

Determine the convergence or divergence of the series using any appropriate test from this chapter. Identify the test used. n=110n\sum _ { n = 1 } ^ { \infty } \frac { 10 } { n ^ { - } }

(Multiple Choice)
4.9/5
(41)

 Identify the interval of convergence of a power series n=1(9)nx2n\text { Identify the interval of convergence of a power series } \sum _ { n = 1 } ^ { \infty } ( - 9 ) ^ { n } x ^ { 2 n } \text {. }

(Multiple Choice)
4.9/5
(40)

Approximate the sum of the series by using the first six terms. n=1(1)n+12n3\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n + 1 } 2 } { n ^ { 3 } }

(Multiple Choice)
4.9/5
(37)

 Determine whether the series n=0cos(nπ)n+3 converges conditionally or \text { Determine whether the series } \sum _ { n = 0 } ^ { \infty } \frac { \cos ( n \pi ) } { n + 3 } \text { converges conditionally or } absolutely, or diverges.

(Multiple Choice)
4.9/5
(34)

Determine the convergence or divergence of the series. n=0(14)n\sum _ { n = 0 } ^ { \infty } \left( \frac { 1 } { 4 } \right) ^ { n }

(Multiple Choice)
5.0/5
(26)

 Write an equivalent series of the series n=0(1)nx6n+16n+1 with the index of \text { Write an equivalent series of the series } \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } x ^ { 6 n + 1 } } { 6 n + 1 } \text { with the index of } summation beginning at n=5n = 5 .

(Multiple Choice)
4.8/5
(36)

UseTheorem 9.11 to determine the convergence or divergence of the series. n=11n0.86\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 0.86 } }

(Multiple Choice)
4.9/5
(37)
Showing 141 - 160 of 179
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)