Exam 9: Sequences

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Match the sequence with its graph. an=1nn!a _ { n } = \frac { 1 ^ { n } } { n ! }

(Multiple Choice)
4.9/5
(38)

 Write an expression for the nth term of the sequence 1011,1920,2829,3738,\text { Write an expression for the } n \text {th term of the sequence } \frac { 10 } { 11 } , \frac { 19 } { 20 } , \frac { 28 } { 29 } , \frac { 37 } { 38 } , \ldots

(Multiple Choice)
4.8/5
(36)

 Write the next two apparent terms of the sequence 1,13,19,127,\text { Write the next two apparent terms of the sequence } 1 , - \frac { 1 } { 3 } , \frac { 1 } { 9 } , - \frac { 1 } { 27 } , \ldots

(Multiple Choice)
4.9/5
(31)

 Determine whether the series n=2(1)nln2n converges conditionally or \text { Determine whether the series } \sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { \ln 2 n } \text { converges conditionally or } absolutely, or diverges.

(Multiple Choice)
4.7/5
(30)

Use the definition to find the Taylor series centered at c=π4 for the function c = \frac { \pi } { 4 } \text { for the function } f(x)=cosxf ( x ) = \cos x

(Multiple Choice)
4.9/5
(38)

Use the definition to find the Taylor series centered at c=0 for the function c = 0 \text { for the function } f(x)=3ln(x2+1)f ( x ) = 3 \ln \left( x ^ { 2 } + 1 \right)

(Multiple Choice)
4.8/5
(29)

Identify the most appropriate test to be used to determine whether the series n=1cosn6n\sum _ { n = 1 } ^ { \infty } \frac { \cos n } { 6 ^ { n } } converges or diverges.

(Multiple Choice)
5.0/5
(36)

Find the sum of the convergent series. n=09(45)n\sum _ { n = 0 } ^ { \infty } 9 \left( \frac { 4 } { 5 } \right) ^ { n }

(Multiple Choice)
4.9/5
(34)

 Find the third Taylor polynomial for f(x)=7x, expanded about c=1\text { Find the third Taylor polynomial for } f ( x ) = \frac { 7 } { x } \text {, expanded about } c = 1 \text {. }

(Multiple Choice)
4.9/5
(31)

Identify the interval of convergence of a power series n=1n(2x)n\sum _ { n = 1 } ^ { \infty } n ( 2 x ) ^ { n }

(Multiple Choice)
4.7/5
(28)

Use the Ratio Test to determine the convergence or divergence of the series. n=1(1)n1(72)nn2\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } \left( \frac { 7 } { 2 } \right) ^ { n } } { n ^ { 2 } }

(Multiple Choice)
4.8/5
(45)

 Find the positive values of p for which the series n=13n(8+n2)p converges. \text { Find the positive values of } p \text { for which the series } \sum _ { n = 1 } ^ { \infty } 3 n \left( 8 + n ^ { 2 } \right) ^ { p } \text { converges. }

(Multiple Choice)
4.8/5
(33)

 Evaluate (75) using the formula (kn)=k(k1)(k2)(k3)(kn+1)n! where \text { Evaluate } \left( \begin{array} { l } 7 \\5\end{array} \right) \text { using the formula } \left( \begin{array} { l } k \\n\end{array} \right) = \frac { k ( k - 1 ) ( k - 2 ) ( k - 3 ) \cdots \cdots ( k - n + 1 ) } { n ! } \text { where } kk is a real number, nn is a positive integer, and (k0)=1\left( \begin{array} { l } k \\ 0 \end{array} \right) = 1

(Multiple Choice)
4.8/5
(38)

Match the sequence with its graph. an=6n+1a _ { n } = \frac { 6 } { n + 1 }

(Multiple Choice)
4.9/5
(38)

Find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.) n=0(1)nn!(x10)n(9)n\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } n ! ( x - 10 ) ^ { n } } { ( 9 ) ^ { n } }

(Multiple Choice)
4.7/5
(36)

Use the Limit Comparison Test (if possible) to determine whether the series n=12n2+99\sum _ { n = 1 } ^ { \infty } \frac { 2 } { \sqrt [ 9 ] { n ^ { 2 } + 9 } }

(Multiple Choice)
4.8/5
(38)

Use the Root Test to determine the convergence or divergence of the series. n=1(7n+14n1)n\sum _ { n = 1 } ^ { \infty } \left( \frac { 7 n + 1 } { 4 n - 1 } \right) ^ { n }

(Multiple Choice)
4.8/5
(30)

Use the Root Test to determine the convergence or divergence of the series. n=1(4n3n+1)n\sum _ { n = 1 } ^ { \infty } \left( \frac { 4 n } { 3 n + 1 } \right) ^ { n }

(Multiple Choice)
4.8/5
(40)

Identify the most appropriate test to be used to determine whether the series n=1n19n2+1\sum _ { n = 1 } ^ { \infty } \frac { n } { 19 n ^ { 2 } + 1 } converges or diverges.

(Multiple Choice)
4.8/5
(26)

Find the Maclaurin polynomial of degree two for the function f(x)=sec(11x)f ( x ) = \sec ( 11 x )

(Multiple Choice)
4.8/5
(38)
Showing 21 - 40 of 179
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)