Exam 9: Sequences

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the Root Test to determine the convergence or divergence of the series n=1e3n\sum _ { n = 1 } ^ { \infty } e ^ { 3 n }

(Multiple Choice)
4.8/5
(29)

Use the definition to find the Taylor series (centered at c) for the function. f(x)=ln(x2),c=1f ( x ) = \ln \left( x ^ { 2 } \right) , c = 1

(Multiple Choice)
4.8/5
(39)

Suppose the annual spending by tourists in a resort city is $100 million. Approximately 90% of that revenue is again spent in the resort city, and of that amount approximately 90% is again spent in the same city, and so on. Write the expression that gives the total amount of Spending generated by the $100 million after n years.

(Multiple Choice)
4.8/5
(30)

 Find the sum of the convergent series n=1(1)n+1111nn by using a well-known \text { Find the sum of the convergent series } \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n + 1 } \frac { 1 } { 11 ^ { n } n } \text { by using a well-known } function. Round your answer to four decimal places.

(Multiple Choice)
4.7/5
(38)

Write the first five terms of the sequence. an=(45)na _ { n } = \left( - \frac { 4 } { 5 } \right) ^ { n }

(Multiple Choice)
4.8/5
(34)

Use the Ratio Test to determine the convergence or divergence of the series. n=1n610n\sum _ { n = 1 } ^ { \infty } \frac { n ^ { 6 } } { 10 ^ { n } }

(Multiple Choice)
4.8/5
(44)

 Find a geometric power series for the function 16+x centered at 0\text { Find a geometric power series for the function } \frac { 1 } { 6 + x } \text { centered at } 0 \text {. }

(Multiple Choice)
4.7/5
(29)

 Find a power series for the function 24x356x2+29x5 centered at 0\text { Find a power series for the function } \frac { 24 x - 35 } { 6 x ^ { 2 } + 29 x - 5 } \text { centered at } 0 \text {. }

(Multiple Choice)
4.9/5
(39)

 Consider the series n=11(6n1)2. The sum of the series is π2/6 Find the sum of \text { Consider the series } \sum _ { n = 1 } ^ { \infty } \frac { 1 } { ( 6 n - 1 ) ^ { 2 } } \text {. The sum of the series is } \pi ^ { 2 } / 6 \text { Find the sum of } the series n=51(6n1)2\sum _ { n = 5 } ^ { \infty } \frac { 1 } { ( 6 n - 1 ) ^ { 2 } } .

(Multiple Choice)
4.9/5
(36)

Write the first five terms of the sequence of partial sums. 5+54+59+516+525+5 + \frac { 5 } { 4 } + \frac { 5 } { 9 } + \frac { 5 } { 16 } + \frac { 5 } { 25 } + \cdots

(Multiple Choice)
4.8/5
(36)

Use the binomial series to find the Maclaurin series for the function. f(x)=1+x2f ( x ) = \sqrt { 1 + x ^ { 2 } }

(Multiple Choice)
4.9/5
(44)

Determine the convergence or divergence of the series n=17(1)n+1n\sum _ { n = 1 } ^ { \infty } \frac { 7 ( - 1 ) ^ { n + 1 } } { n } using any appropriate test.

(Multiple Choice)
4.8/5
(38)

Consider the function given by f(x)=n=0(x14)nf ( x ) = \sum _ { n = 0 } ^ { \infty } \left( \frac { x } { 14 } \right) ^ { n } . Find the interval of convergence for ft(x)f ^ { t } ( x )

(Multiple Choice)
4.8/5
(29)

Write the first three terms of the sequence. an=13n+5n2a _ { n } = 1 - \frac { 3 } { n } + \frac { 5 } { n ^ { 2 } }

(Multiple Choice)
4.7/5
(39)

Determine the minimal number of terms required to approximate the sum of the series with an error of less than 0.004. n=0(1)nn!\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { n ! }

(Multiple Choice)
4.9/5
(29)

Determine the convergence or divergence of the series. n=053n\sum _ { n = 0 } ^ { \infty } \frac { 5 } { 3 ^ { - n } }

(Multiple Choice)
4.9/5
(39)

 Find the differential equation having the solution n=0(1)n(4x)2n+1(2n+1)!\text { Find the differential equation having the solution } \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } ( 4 x ) ^ { 2 n + 1 } } { ( 2 n + 1 ) ! } \text {. }

(Multiple Choice)
4.8/5
(38)

Explain how to use the geometric series g(x)=11x=n=0xn,x<1 to find the g ( x ) = \frac { 1 } { 1 - x } = \sum _ { n = 0 } ^ { \infty } x ^ { n } , | x | < 1 \text { to find the } series for the function 91+x\frac { 9 } { 1 + x } .

(Multiple Choice)
4.8/5
(33)

 The series n=1sec(nπ) converges. \text { The series } \sum _ { n = 1 } ^ { \infty } \sec ( n \pi ) \text { converges. }

(True/False)
4.9/5
(39)

Find the Maclaurin series for the function f(x)=ex79f ( x ) = e ^ { \frac { x ^ { 7 } } { 9 } }

(Multiple Choice)
4.9/5
(36)
Showing 101 - 120 of 179
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)