Exam 12: Vector-Valued Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

 Find rt(t)rtt(t) given the following vector function. \text { Find } \mathbf { r } ^ { t } ( t ) \cdot \mathbf { r } ^ {tt } ( t ) \text { given the following vector function. } r(t)=(2t2+2t)i+(3t2+4t)j\mathbf { r } ( t ) = \left( 2 t ^ { 2 } + 2 t \right) \mathbf { i } + \left( 3 t ^ { 2 } + 4 t \right) \mathbf { j }

(Multiple Choice)
4.9/5
(32)

 Find aT at time t=π3 for the space curve r(t)=7costi+7sintj+8tk. Round your \text { Find } a _ { \mathbf { T } } \text { at time } t = \frac { \pi } { 3 } \text { for the space curve } \mathbf { r } ( t ) = 7 \cos t \mathbf { i } + 7 \sin t \mathbf { j } + 8 t \mathbf { k } \text {. Round your } answer to three decimal places.

(Multiple Choice)
4.7/5
(40)

Find a vector-valued function, using the given parameter, to represent the intersection of the surfaces given below. Surfaces Parameter z=+,y+8x=0 x=t

(Multiple Choice)
4.7/5
(31)

 Find aN at time t=π3 for the space curve r(t)=4costi+4sintj+5tk\text { Find } a _ { \mathbf { N } } \text { at time } t = \frac { \pi } { 3 } \text { for the space curve } \mathbf { r } ( t ) = 4 \cos t \mathbf { i } + 4 \sin t \mathbf { j } + 5 t \mathbf { k }

(Multiple Choice)
4.8/5
(30)

Find the curvature K of the curve r(t)=ti+5t2j+7t34k at the point P(2,20,14)\mathbf { r } ( t ) = t \mathbf { i } + 5 t ^ { 2 } \mathbf { j } + \frac { 7 t ^ { 3 } } { 4 } \mathbf { k } \text { at the point } P ( 2,20,14 ) Round your answer to three decimal places.

(Multiple Choice)
4.8/5
(27)

Find a vector-valued function, using the given parameter, to represent the intersection of the surfaces given below. Surfaces Parameter +=25,z= x=52\pit

(Multiple Choice)
4.8/5
(39)

A baseball is hit 5 feet above the ground at 95 feet per second and at an angle of  of 45\text { of } 45 ^ { \circ } with respect to the ground. Find the arc length of the trajectory. Round your answer to one decimal place.

(Multiple Choice)
4.8/5
(42)

 Find r(t)u(t) given the functions below. \text { Find } \mathbf { r } ( t ) \cdot \mathbf { u } ( t ) \text { given the functions below. } r(t)=3ti+t5j+2t2k,u(t)=6ti+6j5tk\mathbf { r } ( t ) = 3 t \mathbf { i } + \frac { t } { 5 } \mathbf { j } + 2 t ^ { 2 } \mathbf { k } , \mathbf { u } ( t ) = 6 t \mathbf { i } + 6 \mathbf { j } - 5 t \mathbf { k }

(Multiple Choice)
4.9/5
(40)

Dt[r(t)×u(t)] given the following D _ { t } [ \mathbf { r } ( t ) \times \mathbf { u } ( t ) ] \text { given the following } Use the properties of the derivative to find vector-valued functions. (t)=2t-3+3 (t)=3+5+4

(Multiple Choice)
4.9/5
(44)

A 5700-pound vehicle is driven at a speed of 25 miles per hour on a circular interchange of radius 90 feet. To keep the vehicle from skidding off course, what frictional force must The road surface exert on the tires? Round your answer to one decimal place.

(Multiple Choice)
4.8/5
(36)

Determine the interval on which the vector-valued function r(t)=9eti+etj+ln(t5)kr ( t ) = 9 e ^ { - t } \mathbf { i } + e ^ { - t } \mathbf { j } + \ln ( t - 5 ) \mathbf { k } is continuous.

(Multiple Choice)
4.8/5
(37)

Find the domain of the vector-valued function given below. r(t)=F(t)×G(t)\mathbf { r } ( t ) = \mathbf { F } ( t ) \times \mathbf { G } ( t ) where (t)=++(t-4) (t)=+t+(t-1)

(Multiple Choice)
4.9/5
(32)

 Find aN at time t=0 for the plane curve r(t)=e2ti+e6tj. Round your answer to \text { Find } a _ { \mathbf { N } } \text { at time } t = 0 \text { for the plane curve } r ( t ) = e ^ { 2 t } \mathbf { i } + e ^ { - 6 t } \mathbf { j } \text {. Round your answer to } three decimal places.

(Multiple Choice)
4.8/5
(25)

 Find the vectors r(t) and rt(t) for the following vector function. \text { Find the vectors } \mathbf { r } ( t ) \text { and } \mathbf { r } ^ { t } ( t ) \text { for the following vector function. } r(t)=(1+2t)i+(2+5t2)j+2k\mathbf { r } ( t ) = ( 1 + 2 t ) \mathbf { i } + \left( 2 + 5 t ^ { 2 } \right) \mathbf { j } + 2 \mathbf { k }

(Multiple Choice)
4.9/5
(39)

 The position vector r(t)=2cost,4sint,t2 describes the path of an object moving \text { The position vector } \mathbf { r } ( t ) = \left\langle 2 \cos t , 4 \sin t , t ^ { 2 } \right\rangle \text { describes the path of an object moving } in space. Find the velocity v(t)\mathbf { v } ( t ) of the object.

(Multiple Choice)
4.9/5
(23)

 Use the properties of the derivative to find Dt[r(t)u(t)] given the following \text { Use the properties of the derivative to find } D _ { t } [ \mathbf { r } ( t ) \cdot \mathbf { u } ( t ) ] \text { given the following } vector-valued functions. (t)=3t+6+3 (t)=2+2-3

(Multiple Choice)
4.9/5
(41)

Find the point on the curve y=(x8)2+9 at which the curvature K is a y = ( x - 8 ) ^ { 2 } + 9 \text { at which the curvature } K \text { is a } maximum.

(Multiple Choice)
4.9/5
(36)

Determine the maximum height of a projectile fired at a height of 6 feet above the ground with an initial velocity of 700 feet per second and at an angle of 75 above the horizontal. 75 ^ { \circ } \text { above the horizontal. } Use the model for projectile motion, assuming there is no air resistance. Round your answer to three Decimal places.

(Multiple Choice)
4.8/5
(48)

Use the given acceleration function and initial conditions to find the position at time t =1= 1 , a(t)=6i+10j+8k,v(0)=4k,r(0)=0\mathbf { a } ( t ) = 6 \mathbf { i } + 10 \mathbf { j } + 8 \mathbf { k } , \quad \mathbf { v } ( 0 ) = 4 \mathbf { k } , \quad \mathbf { r } ( 0 ) = \mathbf { 0 }

(Multiple Choice)
4.8/5
(38)

The graph below is most likely the graph of which of the following equations? The graph below is most likely the graph of which of the following equations?

(Multiple Choice)
4.9/5
(27)
Showing 21 - 40 of 83
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)