Exam 12: Vector-Valued Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the radius of curvature of the plane curve y=3x2+2 at x=1. Round y = 3 x ^ { 2 } + 2 \text { at } x = - 1 \text {. Round } your answer to three decimal places.

(Multiple Choice)
4.9/5
(33)

Find the length of the space curve given below. r(t)=2ti+5costj+5sintk,[0,3]\mathbf { r } ( t ) = 2 t \mathbf { i } + 5 \cos t \mathbf { j } + 5 \sin t \mathbf { k } , [ 0,3 ]

(Multiple Choice)
4.8/5
(39)

Find the curvature K of the curve r(t)=eti+9tj at the point P(1,0). Round your \mathbf { r } ( t ) = e ^ { t } \mathbf { i } + 9 t \mathbf { j } \text { at the point } P ( 1,0 ) \text {. Round your } answer to three decimal places.

(Multiple Choice)
4.7/5
(33)

 Find rt(t)rtt(t) given the following vector function: \text { Find } \mathbf { r } ^ {t } ( t ) \cdot \mathbf { r } ^ {tt } ( t ) \text { given the following vector function: } r(t)=3t3i5t5j\mathbf { r } ( t ) = - 3 t ^ { 3 } \mathbf { i } - 5 t ^ { 5 } \mathbf { j }

(Multiple Choice)
4.9/5
(38)

Use the properties of the derivative to find vector-valued functions. Dt[r(t)u(t)] given the following D _ { t } [ \mathbf { r } ( t ) \cdot \mathbf { u } ( t ) ] \text { given the following } (t)=t+24t+24t (t)=+24t+24t

(Multiple Choice)
4.8/5
(38)

Match the equation with the graph shown in red below. Match the equation with the graph shown in red below.

(Multiple Choice)
4.7/5
(38)

A baseball is hit 3 feet above the ground at 80 feet per second and at an angle of 4545 ^ { \circ } with respect to the ground. Find the maximum height. Round your answer to the nearest integer.

(Multiple Choice)
4.8/5
(37)

Find the length of the plane curve given below. r(t)=3costi+3sintj,[0,6]\mathbf { r } ( t ) = 3 \cos t \mathbf { i } + 3 \sin t \mathbf { j } , [ 0,6 ]

(Multiple Choice)
4.8/5
(38)

 Find rt(t) given the following vector function. \text { Find } \mathbf { r } ^ { t} ( t ) \text { given the following vector function. } r(t)=2t2i+4t4j+2t3k\mathbf { r } ( t ) = 2 t ^ { 2 } \mathbf { i } + 4 t ^ { 4 } \mathbf { j } + 2 t ^ { 3 } \mathbf { k }

(Multiple Choice)
4.9/5
(38)

A particle moves in the yz-plane along the curve represented by the vector-valued function r(t)=(5cost)j+(7sint)k\mathbf { r } ( t ) = ( 5 \cos t ) \mathbf { j } + ( 7 \sin t ) \mathbf { k } . Find the maximum value of rt\left\| \mathbf { r } ^ { t } \right\|

(Multiple Choice)
4.8/5
(40)

Find the arc length for r(t)=i+5t2j+8t3k over the interval [0,2]. Round your \mathbf { r } ( t ) = \mathbf { i } + 5 t ^ { 2 } \mathbf { j } + 8 t ^ { 3 } \mathbf { k } \text { over the interval } [ 0,2 ] \text {. Round your } answer to two decimal places.

(Multiple Choice)
4.8/5
(40)

Find the unit tangent vector to the curve given below at the specified point. r(t)=6ti+4t2j,t=4\mathbf { r } ( t ) = - 6 t \mathbf { i } + 4 t ^ { 2 } \mathbf { j } , t = 4

(Multiple Choice)
4.9/5
(34)

 Find rt(t) given the following vector function. \text { Find } \mathbf { r } ^ { t } ( t ) \text { given the following vector function. } r(t)=5t4i4t5j+6t3k\mathbf { r } ( t ) = - 5 t ^ { 4 } \mathbf { i } - 4 t ^ { 5 } \mathbf { j } + 6 t ^ { 3 } \mathbf { k }

(Multiple Choice)
4.9/5
(27)

A baseball is hit 5 feet above the ground at 140 feet per second and at an angle of  of 45\text { of } 45 ^ { \circ } with respect to the ground. Find the vector-valued function for the path of the baseball.

(Multiple Choice)
4.9/5
(40)

The smaller the curvature in a bend of a road, the faster a car can travel. Assume that the maximum speed around a turn is inversely proportional to the square root of the curvature. A car Moving on the path y=13x3(x and y are measured in miles) can safely go 25 miles per hour at y = \frac { 1 } { 3 } x ^ { 3 } ( x \text { and } y \text { are measured in miles) can safely go } 25 \text { miles per hour at } (1,13)\left( 1 , \frac { 1 } { 3 } \right) . How fast can it go at (52,12524)\left( \frac { 5 } { 2 } , \frac { 125 } { 24 } \right) ? Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(28)

The quarterback of a football team releases a pass at a height of 6 feet above the playing field, and the football is caught by a receiver 42 yards directly downfield at a height of 3 feet. The pass is released at an angle of 30 with the horizontal. Find the maximum height of the football. 30 ^ { \circ } \text { with the horizontal. Find the maximum height of the football. } Round your answer to one decimal place.

(Multiple Choice)
4.9/5
(31)

Use the given acceleration function and initial conditions to find the position at time t = 3. a(t)=5costi3sintj,v(0)=8j+5k,r(0)=5i\mathbf { a } ( t ) = 5 \cos t \mathbf { i } - 3 \sin t \mathbf { j } , \quad \mathbf { v } ( 0 ) = 8 \mathbf { j } + 5 \mathbf { k } , \quad \mathbf { r } ( 0 ) = - 5 \mathbf { i }

(Multiple Choice)
4.8/5
(38)

 Find aT at time t=0 for the plane curve r(t)=e2ti+e7tj. Round your answer to \text { Find } a _ { \mathbf { T } } \text { at time } t = 0 \text { for the plane curve } \mathbf { r } ( t ) = e ^ { 2 t } \mathbf { i } + e ^ { - 7 t } \mathbf { j } \text {. Round your answer to } three decimal places.

(Multiple Choice)
4.8/5
(23)

 Find aN at time t=1 for the plane curve r(t)=9t2i+5tj. Round your answer to \text { Find } a _ { \mathrm { N } } \text { at time } t = 1 \text { for the plane curve } r ( t ) = 9 t ^ { 2 } \mathbf { i } + 5 t \mathbf { j } \text {. Round your answer to } three decimal places.

(Multiple Choice)
4.8/5
(33)

 The position vector r(t)=2ti+(t2+6)j describes the path of an object moving in \text { The position vector } \mathbf { r } ( t ) = 2 t \mathbf { i } + \left( - t ^ { 2 } + 6 \right) \mathbf { j } \text { describes the path of an object moving in } the xy-plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the point (2,5)( 2,5 )

(Multiple Choice)
5.0/5
(41)
Showing 61 - 80 of 83
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)