Exam 12: Vector-Valued Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Suppose the two particles travel along the space curves r(t)=t2i+(8t16)j+t2k\mathbf { r } ( t ) = t ^ { 2 } \mathbf { i } + ( 8 t - 16 ) \mathbf { j } + t ^ { 2 } \mathbf { k } and u(t)=(3t+4)i+t2j+(5t4)k\mathbf { u } ( t ) = ( 3 t + 4 ) \mathbf { i } + t ^ { 2 } \mathbf { j } + ( 5 t - 4 ) \mathbf { k } . A collision will occur at the point of intersection PP if both particles are at PP at the same time. Find the point of collision.

(Multiple Choice)
4.9/5
(31)

Find the indefinite integral below. (5e5ti4sin4tj+6cos3tk)dt\int \left( 5 e ^ { 5 t } \mathbf { i } - 4 \sin 4 t \mathbf { j } + 6 \cos 3 t \mathbf { k } \right) d t Do not include an arbitrary constant vector.

(Multiple Choice)
4.8/5
(41)

Determine the range of a projectile fired at a height of 5 feet above the ground with an initial velocity of 1000 feet per second and at an angle of 45 above the horizontal. Use the model 45 ^ { \circ } \text { above the horizontal. Use the model } for projectile motion, assuming there is no air resistance. Round your answer to three decimal places.

(Multiple Choice)
4.7/5
(42)

 Find rt(t) given the following vector function. \text { Find } \mathbf { r } ^ { t } ( t ) \text { given the following vector function. } r(t)=4t2i6t4j+t56k\mathbf { r } ( t ) = \frac { 4 } { t ^ { 2 } } \mathbf { i } - 6 t ^ { 4 } \mathbf { j } + \frac { t ^ { 5 } } { 6 } \mathbf { k }

(Multiple Choice)
4.9/5
(45)

Find a vector-valued function, using the given parameter, to represent the intersection of the surfaces given below. Surfaces Parameter z=+,z=81 x=98\pit

(Multiple Choice)
4.9/5
(34)

Evaluate the limit given below. limt4(9ti+t216t24tj+9tk)\lim _ { t \rightarrow 4 } \left( 9 t \mathbf { i } + \frac { t ^ { 2 } - 16 } { t ^ { 2 } - 4 t } \mathbf { j } + \frac { 9 } { t } \mathbf { k } \right)

(Multiple Choice)
4.9/5
(39)

Use the given acceleration function and initial conditions to find the position at time t = 1. a(t)=10i+6j+8k,v(0)=0,r(0)=5j\mathbf { a } ( t ) = 10 \mathbf { i } + 6 \mathbf { j } + 8 \mathbf { k } , \quad \mathbf { v } ( 0 ) = \mathbf { 0 } , \quad \mathbf { r } ( 0 ) = 5 \mathbf { j }

(Multiple Choice)
5.0/5
(40)

A baseball is hit 3 feet above the ground at 80 feet per second and at an angle of  of 45\text { of } 45 ^ { \circ } with respect to the ground. Find the range. Round your answer to one decimal place.

(Multiple Choice)
4.9/5
(36)

A baseball player at second base throws a ball 87 feet to the player at first base. The ball is thrown 5 feet above the ground with an initial velocity of 50 miles per hour and at an angle of Above the horizontal. At which height does the player at first base catch the ball? Round your Answer to three decimal places.

(Multiple Choice)
4.7/5
(45)

Find the indefinite integral below. (6t3i+25t4j+4t1/5k)dt\int \left( \frac { - 6 } { t ^ { 3 } } \mathbf { i } + 25 t ^ { 4 } \mathbf { j } + 4 t ^ { - 1 / 5 } \mathbf { k } \right) d t Do not include an arbitrary constant vector.

(Multiple Choice)
4.9/5
(38)

Find the open interval on which the curve given by the vector-valued function r(θ)=(6θ+6sinθ)i+(86cosθ)jr ( \theta ) = ( 6 \theta + 6 \sin \theta ) \mathbf { i } + ( 8 - 6 \cos \theta ) \mathbf { j } is smooth.

(Multiple Choice)
4.9/5
(40)

Represent the following curve by a vector-valued function. x2121+y264=1,x0\frac { x ^ { 2 } } { 121 } + \frac { y ^ { 2 } } { 64 } = 1 , x \geq 0

(Multiple Choice)
4.8/5
(32)

 The position vector r(t)=7t,6cost,6sint describes the path of an object moving in \text { The position vector } r ( t ) = \langle 7 t , 6 \cos t , 6 \sin t \rangle \text { describes the path of an object moving in } space. Find the speed s(t)s ( t ) of the object.

(Multiple Choice)
4.8/5
(37)

 The position vector r(t)=(4lnt,2t,6t9) describes the path of an object moving in \text { The position vector } \mathbf { r } ( t ) = \left( 4 \ln t , \frac { 2 } { t } , 6 t ^ { 9 } \right) \text { describes the path of an object moving in } space. Find the velocity v(t)\mathbf { v } ( t ) of the object.

(Multiple Choice)
4.8/5
(35)

Find a vector-valued function, using the given parameter, to represent the intersection of the surfaces given below. Surfaces Parameter ++=36,x+y=6 x=3+3t

(Multiple Choice)
4.8/5
(34)

Suppose the outer edge of a playground slide is in the shape of a helix of radius 10.5 meters. The slide has a height of 2 meters and makes one complete revolution from top to bottom. Find a vector-valued function for the helix.

(Multiple Choice)
4.9/5
(38)

 Find aT at time t=1 for the plane curve r(t)=6t2i+5tj. Round your answer to \text { Find } a _ { \mathbf { T } } \text { at time } t = 1 \text { for the plane curve } \mathbf { r } ( t ) = 6 t ^ { 2 } \mathbf { i } + 5 t \mathbf { j } \text {. Round your answer to } three decimal places.

(Multiple Choice)
4.8/5
(39)

Find the point on the curve given below at which the curvature K is zero. y=10x3+31x2+5xy = 10 x ^ { 3 } + 31 x ^ { 2 } + 5 x

(Multiple Choice)
4.8/5
(35)

Find the unit tangent vector T(t) for the line tangent to the space curve \mathrm { T } ( t ) \text { for the line tangent to the space curve } r(t)=12cost,12sint,3)\mathbf { r } ( t ) = \langle 12 \cos t , 12 \sin t , 3 ) at point p(62,62,3)p ( 6 \sqrt { 2 } , 6 \sqrt { 2 } , 3 ) .

(Multiple Choice)
4.8/5
(45)

Sketch the curve represented by the vector-valued function r(t)=(4t)i+tj and \mathbf { r } ( t ) = ( 4 - t ) \mathbf { i } + \sqrt { t } \mathbf { j } \text { and } give the orientation of the curve.

(Multiple Choice)
4.8/5
(36)
Showing 41 - 60 of 83
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)