Exam 14: Iterated Integrals and Area in the Plane

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the center of mass of the solid bounded by z=196x2y2 and z=0 with z = 196 - x ^ { 2 } - y ^ { 2 } \text { and } z = 0 \text { with } density function p=kzp = k z .

(Multiple Choice)
4.9/5
(32)

Find the center of mass of the rectangular lamina with vertices (0,0),(6,0),(0,24)( 0,0 ) , ( 6,0 ) , ( 0,24 ) and (6,24)( 6,24 ) for the density ρ=kxy\rho = k x y .

(Multiple Choice)
4.7/5
(34)

Evaluate the iterated integral below. Note that it is necessary to switch the order of integration. 01x1e9y2dydx\int _ { 0 } ^ { 1 } \int _ { x } ^ {1 } e^{- 9 y ^ { 2 }} d y d x

(Multiple Choice)
4.8/5
(38)

Use a double integral to find the volume of the indicated solid.  Use a double integral to find the volume of the indicated solid.    3 x + y + z = 3 , x > 0 , y > 0 , z > 0 3x+y+z=3,x>0,y>0,z>03 x + y + z = 3 , x > 0 , y > 0 , z > 0

(Multiple Choice)
4.7/5
(35)

Find the mass of the lamina bounded by the graphs of the equations y=ex,y=0,x=0y = e ^ { - x } , y = 0 , x = 0 , and x=6x = 6 for the density ρ=ky2\rho = k y ^ { 2 }

(Multiple Choice)
4.8/5
(43)

Set up a double integral that gives the area of the surface of the graph of f over the region R. f(x,y)=e9xyf ( x , y ) = e ^ { 9 x y } R={(x,y):0x6,0y2}R = \{ ( x , y ) : 0 \leq x \leq 6,0 \leq y \leq 2 \}

(Multiple Choice)
4.9/5
(35)

Set up and evaluate a double integral to find the volume of the solid bounded by the graphs of the equations x2+z2=144x ^ { 2 } + z ^ { 2 } = 144 and y2+z2=144y ^ { 2 } + z ^ { 2 } = 144 in the first octant.

(Multiple Choice)
4.8/5
(28)

Find the center of mass of the lamina bounded by the graphs of the equations x=64y2x = 64 - y ^ { 2 } and x=0x = 0 for the density ρ=kx\rho = k x

(Multiple Choice)
4.8/5
(29)

Find the area of the portion of the surface f(x,y)=7+23y32f ( x , y ) = 7 + \frac { 2 } { 3 } y ^ { \frac { 3 } { 2 } } that lies above the region R={(x,y):0x4,0y4x}R = \{ ( x , y ) : 0 \leq x \leq 4,0 \leq y \leq 4 - x \} . Round your answer to two decimal places.

(Multiple Choice)
4.9/5
(26)

Evaluate the double integral below. 0π505r5sinθcosθdrdθ\int _ { 0 } ^ { \frac { \pi } { 5 } } \int _ { 0 } ^ { 5 } r ^ { 5 } \sin \theta \cos \theta d r d \theta

(Multiple Choice)
4.9/5
(30)

Use a double integral to find the volume of the indicated solid.  Use a double integral to find the volume of the indicated solid.    z = 16 - y ^ { 2 } , z > 0 , x > 0,3 x < y < 4 z=16y2,z>0,x>0,3x<y<4z = 16 - y ^ { 2 } , z > 0 , x > 0,3 x < y < 4

(Multiple Choice)
5.0/5
(31)

Set up a triple integral for the volume of the solid bounded by z=7x2y2 and z = 7 - x ^ { 2 } - y ^ { 2 } \text { and } z=0z = 0

(Multiple Choice)
4.9/5
(25)

Find the area of the surface for the portion of the sphere x2+y2+z2=225 inside x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 225 \text { inside } the cylinder x2+y2=144x ^ { 2 } + y ^ { 2 } = 144

(Multiple Choice)
4.8/5
(35)

Use a double integral to find the volume of the indicated solid. Use a double integral to find the volume of the indicated solid.

(Multiple Choice)
4.9/5
(34)

Use the indicated change of variables to evaluate the following double integral. x=12(u+v),y=12(uv)x = \frac { 1 } { 2 } ( u + v ) , y = - \frac { 1 } { 2 } ( u - v ) R60xydA\iint_{R} 60 x y d A  Use the indicated change of variables to evaluate the following double integral.  x = \frac { 1 } { 2 } ( u + v ) , y = - \frac { 1 } { 2 } ( u - v )   \iint_{R} 60 x y d A

(Multiple Choice)
4.8/5
(30)

Use a change of variables to find the volume of the solid region lying below the surface z=xy7+x2y2z = \frac { x y } { 7 + x ^ { 2 } y ^ { 2 } } and above the plane region RR : region bounded by the graphs of xy=1,xy=4,x=1,x=2x y = 1 , x y = 4 , x = 1 , x = 2 (Hint: Let x=u,y=v/ux = u , y = v / u .) Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(38)

Set up the double integral required to find the moment of inertia I, about the line y=1y = 1 , of the lamina bounded by the graphs of the equations y=9x2y = 9 - x ^ { 2 } and y=0y = 0 for the density ρ=k\rho = k . Use a computer algebra system to evaluate the double integral.

(Multiple Choice)
4.7/5
(27)

Evaluate the iterated integral 0x20y702y(3siny)dxdydz\int_{0}^{\frac{x}{2}}\int_{0} ^ {\frac{y}{7}}\int_{0} ^ {\frac{2}{y}} (3 sin y) dx dy dz

(Multiple Choice)
4.9/5
(37)

Set up and evaluate a double integral to find the volume of the solid bounded by the graphs of the equations y=0,z=0,y=x,z=x,x=0, and x=33y = 0 , z = 0 , y = x , z = x , x = 0 \text {, and } x = 33

(Multiple Choice)
4.8/5
(29)

Evaluate the following iterated integral. 12030x(2zex2)dxdydz\int_{1}^{2}\int_{0} ^ {3}\int_{0} ^ {x}(2ze^{-x^2} )d x d y d z

(Multiple Choice)
4.8/5
(32)
Showing 61 - 80 of 118
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)