Exam 14: Iterated Integrals and Area in the Plane

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Set up and evaluate a double integral to find the volume of the solid bounded by the graphs of the equations given below. z=125+y2,x=0,x=2,y0z = \frac { 1 } { 25 + y ^ { 2 } } , x = 0 , x = 2 , y \geq 0

(Multiple Choice)
4.9/5
(41)

Use a change of variables to find the volume of the solid region lying below the surface z=(xy)(x+3y)z = \sqrt { ( x - y ) ( x + 3 y ) } and above the plane region RR : region bounded by the parallelogram with vertice (0,0),(5,5),(20,0),(15,5)( 0,0 ) , ( 5,5 ) , ( 20,0 ) , ( 15 , - 5 ) . Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(38)

Find a such that the volume inside the hemisphere z=100x2y2 and outside z = \sqrt { 100 - x ^ { 2 } - y ^ { 2 } } \text { and outside } the cylinder x2+y2=a2x ^ { 2 } + y ^ { 2 } = a ^ { 2 } is one-half the volume of the hemisphere. Round your answer to four decimal places.

(Multiple Choice)
4.8/5
(31)

Set up a double integral that gives the area of the surface on the graph of f(x,y)=10cos(x2+y2)f ( x , y ) = 10 \cos \left( x ^ { 2 } + y ^ { 2 } \right) over the region R={(x,y):x2+y2π4}R = \left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } \leq \frac { \pi } { 4 } \right\}

(Multiple Choice)
4.8/5
(31)

Use a double integral to find the area enclosed by the graph of r=3cos3θr = 3 \cos 3 \theta  Use a double integral to find the area enclosed by the graph of  r = 3 \cos 3 \theta

(Multiple Choice)
4.7/5
(30)

The area of a region R is given by the iterated integrals 02x16dydx+2404x16dydx\int _ { 0 } ^ { 2 x } 16 d y d x + \int _ { 2 } ^ { 4 } \int _ { 0 } ^ { 4 - x } 16 d y d x Switch the order of integration and show that both orders yield the same area. What is this area?

(Multiple Choice)
4.8/5
(41)

Use a double integral to find the volume of the indicated solid. Use a double integral to find the volume of the indicated solid.

(Multiple Choice)
4.8/5
(29)

Set up a double integral that gives the area of the surface of the graph of f over the region R. f(x,y)=-9xy+9 R=\{(x,y):-6\leqx\leq6,-8\leqy\leq8\}

(Multiple Choice)
4.9/5
(41)

Use spherical coordinates to find the z coordinate of the center of mass of the solid lying between two concentric hemispheres of radii 4 and 7, and having uniform density k.

(Multiple Choice)
4.7/5
(35)

Use cylindrical coordinates to find the volume of the solid inside the sphere x2+y2+z2=64x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 64 and above the upper nappe of the cone z2=x2+y2z ^ { 2 } = x ^ { 2 } + y ^ { 2 } .

(Multiple Choice)
4.8/5
(32)

Sketch the solid whose volume is given by the iterated integral given below and use the sketch to rewrite the integral using the indicated order of integration. 02y204y2dzdxdy \int_{0}^{2} \int_{y}^{2}\int_{0}^{\sqrt{4-y^2}} dzdxdy Rewrite the integral using the order dzdydxd z d y d x .

(Multiple Choice)
4.8/5
(32)

Find the center of mass of the rectangular lamina with vertices (0,0),(14,0),(0,12)( 0,0 ) , ( 14,0 ) , ( 0,12 ) , and (14,12)( 14,12 ) for the density ρ=k(x2+y2)\rho = k \left( x ^ { 2 } + y ^ { 2 } \right)

(Multiple Choice)
4.9/5
(40)

Find zˉ\bar z of the center of mass of the solid of given density ρ(x,y,z)=kx bounded \rho ( x , y , z ) = k x \text { bounded } by the graphs of the equations Q:z=12x,z=0,y=0,y=4,x=0Q : z = 12 - x , z = 0 , y = 0 , y = 4 , x = 0 .

(Multiple Choice)
4.9/5
(38)

Find the area of the surface for the portion of the paraboloid z=64x2y2z = 64 - x ^ { 2 } - y ^ { 2 } in the first Octant.

(Multiple Choice)
4.7/5
(41)

Use an iterated integral to find the area of the region bounded by 2x5y=0,x+y=6,y=0.2 x - 5 y = 0 , \quad x + y = 6 , \quad y = 0 .

(Multiple Choice)
5.0/5
(38)

A company produces a spherical object of radius 24 centimeters. A hole of radius 5 centimeters is drilled through the center of the object. Find the outer surface area of the object.

(Multiple Choice)
4.8/5
(37)

Find the mass of the lamina bounded by the graphs of the equations y=441x2y = \sqrt { 441 - x ^ { 2 } } and 0yx0 \leq y \leq x for the density ρ=k\rho = k

(Multiple Choice)
4.9/5
(26)

Evaluate the following integral. yπ5sin3xcosydx\int _ { y } ^ { \frac { \pi } { 5 } } \sin ^ { 3 } x \cos y d x

(Multiple Choice)
4.7/5
(28)

Find the mass of the triangular lamina with vertices (0,0),(18,36), and (36,0) for ( 0,0 ) , ( 18,36 ) \text {, and } ( 36,0 ) \text { for } the density ρ=kxy\rho=k x y

(Multiple Choice)
4.8/5
(40)

Find the area of the surface given by z=f(x,y) over the region Rz = f ( x , y ) \text { over the region } R \text {. } f(x,y)=32x+5yf ( x , y ) = 3 - 2 x + 5 y RR : square with vertices (0,0),(4,0),(4,4),(0,4)( 0,0 ) , ( 4,0 ) , ( 4,4 ) , ( 0,4 )

(Multiple Choice)
4.7/5
(40)
Showing 21 - 40 of 118
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)