Exam 14: Iterated Integrals and Area in the Plane

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Evaluate the following iterated integral. 2545(2x+y)dydx\int _ { 2 } ^ { 5 } \int _ { 4 } ^ { 5 } ( 2 x + y ) d y d x

(Multiple Choice)
5.0/5
(39)

 Evaluate 0201(1+2x+2y)dydx\text { Evaluate } \int _ { 0 } ^ { 2 } \int _ { 0 } ^ { 1 } ( 1 + 2 x + 2 y ) d y d x

(Multiple Choice)
4.8/5
(27)

 Evaluate the iterated integral 02y24xsin(2x)dxdy by switching the order of \text { Evaluate the iterated integral } \int _ { 0 } ^ { 2 } \int _ { y ^ { 2 } } ^ { 4 } \sqrt { x } \sin ( 2 x ) d x d y \text { by switching the order of } integration. Round your answer to three decimal places.

(Multiple Choice)
4.7/5
(37)

Evaluate the following iterated integral. 581x2yexdydx\int _ { 5 } ^ { 8 } \int _ { 1 } ^ { \sqrt { x } } 2 y e ^ { - x } d y d x

(Multiple Choice)
4.7/5
(44)

Evaluate the following integral. 115y4yxdx\int _ { 11 } ^ { 5 y } \frac { - 4 y } { x } d x

(Multiple Choice)
4.8/5
(31)

Find the center of mass of the lamina bounded by the graphs of the equations y=ex,y=0,x=0y = e ^ { x } , y = 0 , x = 0 , and x=20x = 20 for the density ρ=k\rho = k

(Multiple Choice)
4.7/5
(34)

A company produces a spherical object of radius 17 centimeters. A hole of radius 7 centimeters is drilled through the center of the object. Find the volume of the object.

(Multiple Choice)
4.9/5
(36)

Use a triple integral to find the volume of the solid bounded by the graphs of the equations z=2y,z=6y2,x=0,x=3,y=0z = 2 - y , z = 6 - y ^ { 2 } , x = 0 , x = 3 , y = 0

(Multiple Choice)
4.8/5
(40)

Find the area of the surface given by z=f(x,y) over the region Rz = f ( x , y ) \text { over the region } R \text {. } f(x,y)=xy R= (x,y):+\leq100

(Multiple Choice)
4.9/5
(32)

Use a double integral in polar coordinates to find the volume of the solid inside the hemisphere z=64x2y2z = \sqrt { 64 - x ^ { 2 } - y ^ { 2 } } but outside the cylinder x2+y2=25x ^ { 2 } + y ^ { 2 } = 25

(Multiple Choice)
4.9/5
(38)

Use a change of variables to find the volume of the solid region lying below the surface z=27xyz = 27 x y and above the plane region RR : region bounded by the square with vertices (0,0),(2,2),(0,4),(2,2)( 0,0 ) , ( - 2,2 ) , ( 0,4 ) , ( 2,2 )

(Multiple Choice)
4.8/5
(33)

Evaluate the following iterated integral. 060402(4x+5y+z)dxdydz\int_{0}^{6}\int_{0} ^ {4}\int_{0} ^ {2}(-4 x+5 y+z) d x d y d z

(Multiple Choice)
4.8/5
(40)

 Write a double integral that represents the surface area of f(x,y)=12x2y2\text { Write a double integral that represents the surface area of } f ( x , y ) = 12 - x ^ { 2 } - y ^ { 2 } over the region R:R={(x,y):0x4,0y4}R : R = \{ ( x , y ) : 0 \leq x \leq 4,0 \leq y \leq 4 \} . Use a computer algebra system to evaluate the double integral. Round your answer to four decimal places.

(Multiple Choice)
4.8/5
(26)

Find the mass of the lamina described by the inequalities x0x \geq 0 and 3y3+9x23 \leq y \leq 3 + \sqrt { 9 - x ^ { 2 } } , given that its density is ρ(x,y)=7xy\rho ( x , y ) = 7 x y . (Hint: Some of the integrals are simpler in polar coordinates.)

(Multiple Choice)
4.8/5
(38)

Rewrite the iterated integral 0606x20244x8y8dzdydx \int_{0}^{6} \int_{0}^{\frac{6-x}{2}}\int_{0}^{\frac{24-4x-8y}{8}} dzdydx using the order dydxdzd y d x d z .

(Multiple Choice)
4.8/5
(31)

Determine the diameter of a hole that is drilled vertically through the center of the solid bounded by the graphs of the equations z=28e(x2+y2)/4,z=0z = 28 e ^ { - \left( x ^ { 2 } + y ^ { 2 } \right) / 4 } , z = 0 , and x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 if one-tenth of the volume of the solid is removed. Round your answer to four decimal places.

(Multiple Choice)
4.8/5
(38)

Suppose the population density of a city is approximated by the model f(x,y)=6000e0.01(x2+y2),x2+y225f ( x , y ) = 6000 e ^ { - 0.01 \left( x ^ { 2 } + y ^ { 2 } \right) } , x ^ { 2 } + y ^ { 2 } \leq 25 , where xx and yy are measured in miles. Integrate the density function over the indicated circular region to approximate the population of the city. Round your answer to the nearest integer.

(Multiple Choice)
4.8/5
(41)

Evaluate the following iterated integral. 0π/20cos2θ01r2rsinθdzdrdθ\int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { \cos ^ { 2 } \theta } \int _ { 0 } ^ { 1 - r ^ { 2 } } r \sin \theta d z d r d \theta

(Multiple Choice)
4.8/5
(30)

Use an iterated integral to find the area of the region shown in the figure below. Use an iterated integral to find the area of the region shown in the figure below.

(Multiple Choice)
4.9/5
(32)

up a triple integral for the volume of the solid bounded above by the cylinder z=14x2z = 14 - x ^ { 2 } and below by the paraboloid z=x2+15y2z = x ^ { 2 } + 15 y ^ { 2 } .

(Multiple Choice)
4.9/5
(29)
Showing 81 - 100 of 118
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)