Exam 9: Vectors and the Geometry of Space

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find an equation of a plane containing the point P(2, -1, 1) and perpendicular to the y-axis.

Free
(Multiple Choice)
4.8/5
(32)
Correct Answer:
Verified

D

Convert (1,π4,π4)\left( 1 , \frac { \pi } { 4 } , \frac { \pi } { 4 } \right) from spherical coordinates to rectangular coordinates.

Free
(Multiple Choice)
4.8/5
(31)
Correct Answer:
Verified

B

Find the intersection point of the line r=1,0,2+2,2,1t\mathbf { r } = \langle 1,0,2 \rangle + \langle 2 , - 2,1 \rangle t and the plane 3x + 4y + 6z = 7.

Free
(Short Answer)
4.8/5
(36)
Correct Answer:
Verified

(-3, 4, 0)

Find a×b\mathbf { a } \times \mathbf { b } , where a and b are given in the figure.  Find  \mathbf { a } \times \mathbf { b }  , where a and b are given in the figure.

(Short Answer)
4.9/5
(26)

Convert (1,1,2)( 1,1 , \sqrt { 2 } ) from rectangular coordinates to spherical coordinates.

(Multiple Choice)
4.9/5
(42)

What region of R3\mathbb { R } ^ { 3 } is represented by the inequality x2+y21x ^ { 2 } + y ^ { 2 } \leq 1 ?

(Multiple Choice)
4.8/5
(36)

Find the cross product a×b\mathbf { a } \times \mathbf { b } , where a = i + 2j + 3k and b = 2i - j + k.

(Essay)
4.8/5
(34)

Convert (1,1,1)( 1,1,1 ) from rectangular coordinates to cylindrical coordinates.

(Multiple Choice)
4.9/5
(35)

Describe in words or sketch the solid represented in cylindrical coordinates by the inequalities π6θπ3,0r2,1z1\frac { \pi } { 6 } \leq \theta \leq \frac { \pi } { 3 } , 0 \leq r \leq 2 , - 1 \leq z \leq 1 .  Describe in words or sketch the solid represented in cylindrical coordinates by the inequalities  \frac { \pi } { 6 } \leq \theta \leq \frac { \pi } { 3 } , 0 \leq r \leq 2 , - 1 \leq z \leq 1  .

(Essay)
4.8/5
(35)

Find the components of a vector a whose initial point is (1,1)( 1,1 ) and terminal point is (4,3)( 4 , - 3 ) .

(Multiple Choice)
4.8/5
(28)

Find the cosine of the acute angle between the lines x = 4 - 4t, y = 3 - t, z = 1 + 5t and x = 4 - t, y = 3 + 2t, z = 1.

(Short Answer)
4.9/5
(43)

Find equations of all planes containing the y-axis.

(Essay)
4.7/5
(24)

Let a and b be vectors. Under what conditions is a×b=b×a\mathbf { a } \times \mathbf { b } = \mathbf { b } \times \mathbf { a } ? When is (2a)×(3b)=6(a×b)( 2 \mathbf { a } ) \times ( 3 \mathbf { b } ) = 6 ( \mathbf { a } \times \mathbf { b } ) ?

(Essay)
4.9/5
(35)

Convert (1,3,2)( - 1 , \sqrt { 3 } , 2 ) from rectangular coordinates to spherical coordinates.

(Multiple Choice)
4.9/5
(33)

Let f(x, y) = ln(xy)\ln ( x y ) (a) Evaluate f(3,13)f \left( 3 , \frac { 1 } { 3 } \right) .(b) Find the domain of f.(c) Find the range of f.

(Essay)
4.8/5
(32)

If Q=(1,π2,3)Q = \left( 1 , \frac { \pi } { 2 } , 3 \right) in cylindrical coordinates, find rectangular coordinates of Q.

(Short Answer)
4.9/5
(38)

Identify the surface x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 .

(Multiple Choice)
4.8/5
(26)

Find the torque vector τ\tau of the force F = {1,1,0}\{ 1,1,0 \} acting on a rigid body at the point given by the position vector r = {2,3,0}\{ 2,3,0 \} .

(Multiple Choice)
4.9/5
(37)

Given the vectors u = 2i + j - k and w = i + j + 4k, find a vector of length 2 which is orthogonal to both u and w.

(Essay)
4.7/5
(39)

Let f(x, y) = (x2+y)3\left( x ^ { 2 } + y \right) ^ { 3 } . If x = 1, find f(x, 2x).

(Multiple Choice)
4.7/5
(34)
Showing 1 - 20 of 269
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)