Exam 11: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

If z=f(x,y)z = f ( x , y ) has continuous second partial derivatives, x=2u+vx = 2 u + v , and y=u3vy = u - 3 v , express δ2zδuδv\frac { \delta ^ { 2 } z } { \delta u \delta v } in terms of δ2zδx2\frac { \delta ^ { 2 } z } { \delta x ^ { 2 } } , δ2zδxδy\frac { \delta ^ { 2 } z } { \delta x \delta y } , and δ2zδy2\frac { \delta ^ { 2 } z } { \delta y ^ { 2 } } .

Free
(Essay)
4.8/5
(35)
Correct Answer:
Verified

δ2zδuδv=2δ2zδx25δ2zδxδy3δ2zδy2\frac { \delta ^ { 2 } z } { \delta u \delta v } = 2 \frac { \delta ^ { 2 } z } { \delta x ^ { 2 } } - 5 \frac { \delta ^ { 2 } z } { \delta x \delta y } - 3 \frac { \delta ^ { 2 } z } { \delta y ^ { 2 } }

Find δzδx\frac { \delta z } { \delta x } for x3y+xz3=0x ^ { 3 } - y + x z ^ { 3 } = 0

Free
(Essay)
4.9/5
(31)
Correct Answer:
Verified

δzδx=(3x2+z3)3xz2\frac { \delta z } { \delta x } = \frac { - \left( 3 x ^ { 2 } + z ^ { 3 } \right) } { 3 x z ^ { 2 } }

Find the linear approximation to the function f(x,y)=2x2+y2f ( x , y ) = 2 x ^ { 2 } + y ^ { 2 } at (1,1)( 1,1 ) and use it to approximate f(1.1,1.1)f ( 1.1,1.1 ) .

Free
(Essay)
5.0/5
(31)
Correct Answer:
Verified

z=4x+2y3,f(1.1,1.1)3.6z = 4 x + 2 y - 3 , f ( 1.1,1.1 ) \approx 3.6

A cardboard box without a lid is to have volume 100 cubic inches, with total area of cardboard as small as possible. Find its height in inches.

(Multiple Choice)
4.8/5
(41)

Solve completely, using Lagrange multipliers: Find the dimension of a box with volume 1000 which minimizes the total length of the 12 edges.

(Essay)
4.7/5
(28)

Find an equation of the tangent plane to the surface 4x2y2+3z2=104 x ^ { 2 } - y ^ { 2 } + 3 z ^ { 2 } = 10 at the point (2,3,1)( 2 , - 3,1 ) .

(Essay)
4.9/5
(18)

Find the point(s) on the surface x2+y2+4z2=6x ^ { 2 } + y ^ { 2 } + 4 z ^ { 2 } = 6 such that the tangent plane at the point is parallel to the plane x+2y2z=4x + 2 y - 2 z = 4

(Essay)
4.8/5
(39)

Let z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } , x=s2t2x = s ^ { 2 } - t ^ { 2 } , and y=2sty = 2 s t . Use the chain rule to find δzδs\frac { \delta z } { \delta s } and δzδt\frac { \delta z } { \delta t } .

(Essay)
4.8/5
(36)

The surface of a certain lake is represented by a region in the xyx y -plane such that the depth under the point corresponding to (x,y)( x , y ) is f(x,y)=3002x23y2f ( x , y ) = 300 - 2 x ^ { 2 } - 3 y ^ { 2 } . Zeke the dog is at the point (3,2)( 3,2 ) .(a) In what direction should Zeke swim in order for the depth to decrease most rapidly? (b) In what direction would the depth remain the same?

(Essay)
4.9/5
(32)

Let f(x,y)={x4y4x2+y2 if (x,y)(0,0)0 if (x,y)=(0,0)f ( x , y ) = \left\{ \begin{array} { l l } \frac { x ^ { 4 } - y ^ { 4 } } { x ^ { 2 } + y ^ { 2 } } & \text { if } ( x , y ) \neq ( 0,0 ) \\0 & \text { if } ( x , y ) = ( 0,0 )\end{array} \right. Where is ff continuous?

(Short Answer)
4.8/5
(35)

A rancher with 300 ft of fence intends to enclose a rectangular corral, dividing it in half by a fence parallel to the short sides of the corral. What is the maximum area he can enclose? Compute the value of λ\lambda . What does λ\lambda represent?

(Essay)
4.7/5
(29)

A company estimates that its annual profits for next year will be z=6xyy3x2z = 6 x y - y ^ { 3 } - x ^ { 2 } , where xx represents investment in research and yy represents investment in labor. All units are in tens of thousands of dollars. Determine the amount the company should spend on research and on labor to maximize its profit. What is maximum profit?

(Essay)
4.9/5
(32)

Find the differential of w=xeysinxw = x e ^ { y \sin x } at the point (x,y,z)=(1,1,0)( x , y , z ) = ( 1,1,0 ) .

(Multiple Choice)
5.0/5
(35)

Describe the level curves of the function f(x,y)=yx2f ( x , y ) = \frac { y } { x ^ { 2 } } .

(Multiple Choice)
4.8/5
(27)

Let f(x,y)=x22yf ( x , y ) = x ^ { 2 } - 2 y .(a) Sketch the level curves for ff .(b) Find a formula for the level curve that passes through the point (3,1)( 3,1 ) .

(Essay)
4.9/5
(35)

If z=x2siny+yexz = x ^ { 2 } \sin y + y e ^ { x } , find δzδx,δzδy,δ2zδx2,δ2zδxδy, and δ2zδy2\frac { \delta z } { \delta x } , \frac { \delta z } { \delta y } , \frac { \delta ^ { 2 } z } { \delta x ^ { 2 } } , \frac { \delta ^ { 2 } z } { \delta x \delta y } \text {, and } \frac { \delta ^ { 2 } z } { \delta y ^ { 2 } }

(Essay)
4.9/5
(42)

Let z=xyz = x y , and let xx and yy be functions of tt with x(1)=1,y(1)=2,x(1)=3, and y(1)=4x ( 1 ) = 1 , y ( 1 ) = 2 , x ^ { \prime } ( 1 ) = 3 \text {, and } y ^ { \prime } ( 1 ) = 4 . Find dz/dtd z / d t when t=1t = 1 .

(Multiple Choice)
4.8/5
(28)

Let z=lnx2+y2z = \ln \sqrt { x ^ { 2 } + y ^ { 2 } } , x=rcosθx = r \cos \theta , and y=rsinθy = r \sin \theta . Use the chain rule to find δzδr\frac { \delta z } { \delta r } and dzδθ\frac { d z } { \delta \theta } .

(Essay)
4.9/5
(34)

Let the temperature in a flat plate be given by the function T(x,y)=3x2+2xyT ( x , y ) = 3 x ^ { 2 } + 2 x y . What is the value of the directional derivative of this function at the point (36)( 3 - 6 ) in the direction v=4i3j\mathbf { v } = 4 \mathbf { i } - 3 \mathbf { j } ? In what direction is the plate cooling most rapidly at (3,6)( 3 , - 6 ) ?

(Essay)
4.8/5
(30)

Find the directional derivative of the function f(x,y,z)=xyzf ( x , y , z ) = \sqrt { x y z } at the point (2,4,2)( 2,4,2 ) in the direction of the vector {4,2,4}\{ 4,2 , - 4 \} .

(Multiple Choice)
4.8/5
(28)
Showing 1 - 20 of 294
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)