Exam 8: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find a power series representation for xx3+1dx\int \frac { x } { x ^ { 3 } + 1 } d x .

Free
(Essay)
4.9/5
(39)
Correct Answer:
Verified

n=0x3n+23n+2+C\sum _ { n = 0 } ^ { \infty } \frac { x ^ { 3 n + 2 } } { 3 n + 2 } + C

Which of the following series converges? 1) n=1(1)nnn+1\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } n } { n + 1 } 2) n=1n+1n2+2\sum _ { n = 1 } ^ { \infty } \frac { \sqrt { n + 1 } } { n ^ { 2 } + 2 } 3) n=1(1)n1n+1\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } } { \sqrt { n + 1 } }

Free
(Multiple Choice)
4.9/5
(34)
Correct Answer:
Verified

G

Find the sum of the series n=21n21\sum _ { n = 2 } ^ { \infty } \frac { 1 } { n ^ { 2 } - 1 } .

Free
(Multiple Choice)
4.8/5
(32)
Correct Answer:
Verified

F

Determine whether the series 81100+9101+109- \frac { 81 } { 100 } + \frac { 9 } { 10 } - 1 + \frac { 10 } { 9 } - \ldots is convergent or divergent. If it is convergent, find its sum.

(Short Answer)
4.7/5
(40)

Find the sum of the series n=314n21\sum _ { n = 3 } ^ { \infty } \frac { 1 } { 4 n ^ { 2 } - 1 } .

(Multiple Choice)
4.9/5
(38)

Consider the sequence defined by an=(34)na _ { n } = \left( - \frac { 3 } { 4 } \right) ^ { n } . (n starts at 1) (a) Write the first five terms of the sequence.(b) Determine the limit of the sequence.(c) Let bn=an+1anb _ { n } = \frac { a _ { n + 1 } } { a _ { n } } . Write the first five terms of this sequence.(d) Determine the limit of bnb _ { n } .

(Essay)
4.8/5
(34)

Test the following series for convergence or divergence: n=1(1)ncos(πn)\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \cos \left( \frac { \pi } { n } \right) .

(Short Answer)
4.8/5
(35)

A series k=1ak\sum _ { k = 1 } ^ { \infty } a _ { k } has partial sums, SnS _ { n } , given by Sn=7n2nS _ { n } = \frac { 7 n - 2 } { n } (a) Is k=1ak\sum _ { k = 1 } ^ { \infty } a _ { k } convergent? If it is, find the sum.(b) Find limnak\lim _ { n \rightarrow \infty } a _ { k } .(c) Find k=1200ak\sum _ { k = 1 } ^ { 200 } a _ { k }

(Essay)
4.9/5
(33)

Find the radius of convergence of n=0(1)nx2n+1(2n+1)!\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } x ^ { 2 n + 1 } } { ( 2 n + 1 ) ! } .

(Multiple Choice)
4.9/5
(35)

Find the coefficient of x5x ^ { 5 } in the Maclaurin series for f(x)=cos(x2)dxf ( x ) = \int \cos \left( x ^ { 2 } \right) d x .Note: The series is unique except for the constant of integration.

(Multiple Choice)
4.7/5
(36)

Which of the following are alternating series? 1) (1)2nn\frac { ( - 1 ) ^ { 2 n } } { n } 2) n=1(1)n1n\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } } { n } 3) n=1cosnπn\sum _ { n = 1 } ^ { \infty } \frac { \cos n \pi } { n }

(Multiple Choice)
4.8/5
(35)

Examine the two series below for absolute convergence (A), convergence that is not absolute (C), or divergence (D). 1) n=1(1)n1n+1ln(n+1)\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } \frac { n + 1 } { \ln ( n + 1 ) } 2) n=1(1)n1ln(n+1)n+1\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } \frac { \ln ( n + 1 ) } { n + 1 }

(Multiple Choice)
4.9/5
(30)

Use the Ratio Test to examine the two series below, stating: absolute convergence (A), divergence (D), or Ratio Test inconclusive (I). 1) n=1(1)n122n+15n\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } \frac { 2 ^ { 2 n + 1 } } { 5 ^ { n } } 2) n=1(1)n15n22n+1\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } \frac { 5 ^ { n } } { 2 ^ { 2 n + 1 } }

(Multiple Choice)
4.9/5
(35)

Find the limit of the sequence an=ne1/na _ { n } = n e ^ { 1 / n } .

(Multiple Choice)
4.7/5
(34)

Which of the following is a power series? 1) 1+3x+3x41 + \frac { 3 } { x } + 3 x ^ { 4 } 2) n=13nxn\sum _ { n = 1 } ^ { \infty } 3 ^ { n } x ^ { - n } 3) n=1(1)n1(2x+1)n\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } ( 2 x + 1 ) ^ { n }

(Multiple Choice)
5.0/5
(38)

Determine if the series n=16nn100\sum _ { n = 1 } ^ { \infty } \frac { 6 ^ { n } } { n ^ { 100 } } converges or diverges by the Ratio Test or Root Test.

(Essay)
4.9/5
(32)

Use the integral test to show that the series k=21k(lnk)y\sum _ { k = 2 } ^ { \infty } \frac { 1 } { k ( \ln k ) ^ { y } } converges if p>1p > 1 and diverges if p1p \leq 1 .Hint: Consider the two cases p=1p = 1 and p1p \neq 1 .

(Essay)
4.8/5
(29)

Determine the limit of the sequence an=(1)n(11n)a _ { n } = ( - 1 ) ^ { n } \left( 1 - \frac { 1 } { \sqrt { n } } \right) .

(Multiple Choice)
4.7/5
(23)

Estimate the range of values of x for which the approximation lnx=ln2+12(x2)18(x2)2\ln x = \ln 2 + \frac { 1 } { 2 } ( x - 2 ) - \frac { 1 } { 8 } ( x - 2 ) ^ { 2 } is accurate to within 0.01.

(Multiple Choice)
4.7/5
(29)

Which of the following series are convergent, but not absolutely convergent? 1) n=1(1)n+1n+2n2+1\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n + 1 } \frac { n + 2 } { n ^ { 2 } + 1 } 2) n=1(1)nn4\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { n ^ { 4 } } 3) n=1(1)nnn+1\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } n } { n + 1 }

(Multiple Choice)
4.8/5
(31)
Showing 1 - 20 of 341
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)