Exam 9: Vectors and the Geometry of Space

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Given points A = (2,5π6,1)\left( 2 , \frac { 5 \pi } { 6 } , 1 \right) and B = (3,π2,2)\left( 3 , \frac { \pi } { 2 } , - 2 \right) in cylindrical coordinates, find the distance between the two points.

(Essay)
4.9/5
(41)

Find the distance from the point (3, 3, 5) to the point (0, -1, -1).

(Multiple Choice)
4.8/5
(36)

Find an equation of the plane whose graph is given below. Find an equation of the plane whose graph is given below.

(Essay)
4.8/5
(38)

Find the length of the vector ab\mathbf { a } - \mathbf { b } , where a=1,3\mathbf { a } = \langle 1,3 \rangle and b=5,2\mathbf { b } = \langle 5,2 \rangle .

(Multiple Choice)
4.9/5
(36)

Find an equation of the plane containing the lines x2=y23=z+11\frac { x } { 2 } = \frac { y - 2 } { 3 } = \frac { z + 1 } { 1 } and x+14=y6=z32\frac { x + 1 } { 4 } = \frac { y } { 6 } = \frac { z - 3 } { 2 }

(Essay)
4.8/5
(41)

The center of the sphere x2+y2+z2+4x2y6z=0x ^ { 2 } + y ^ { 2 } + z ^ { 2 } + 4 x - 2 y - 6 z = 0 is

(Multiple Choice)
4.9/5
(40)

Let a and b be unit vectors and c = a + b. Use the dot product to prove that the angle between a and c is equal the angle between b and c.

(Essay)
5.0/5
(43)

Which two of the following four vectors are parallel? (a) (0,8,2)( 0,8,2 ) (b) (1,4,1)( - 1,4,1 ) (c) (12,2,12)\left( - \frac { 1 } { 2 } , 2 , \frac { 1 } { 2 } \right) (d) (72,5,72)\left( \frac { 7 } { 2 } , 5 , - \frac { 7 } { 2 } \right)

(Short Answer)
4.7/5
(38)

Find the coordinate of the initial point of a vector a=3,2,2}\mathbf { a } = \langle 3 , - 2,2 \} whose terminal point is (4,3,5)( 4 , - 3,5 ) .

(Multiple Choice)
4.8/5
(33)

The lines l1:l _ { 1 } : r1=2,3,1+t1,1,1\mathbf { r } _ { 1 } = \langle 2,3,1 \rangle+ t \langle - 1,1,1 \rangle and l2: r2=3,1,2+s1,2,1\mathbf { r } _ { 2 } = \langle 3,1,2 \rangle + s \langle - 1,2 , - 1\rangle both contain the point P (2, 3, 1). Find the value of s which gives the point of intersection P, and then compute the angle θ\theta between the two lines.

(Essay)
4.9/5
(38)

Let P = (1, 3, 2) and let L be the line with parametric equations x = 2 - t, y = - 1 + 2t, z = 3 + t. Use the vector cross product to find the distance from P to L.

(Short Answer)
4.8/5
(38)

Use the property of the cross product that u×v=uvsinθ| \mathbf { u } \times \mathbf { v } | = | \mathbf { u } | | \mathbf { v } | \sin \theta to derive a formula for the distance d from a point P to a line l. Use this formula to find the distance from the origin to the line through (2, 1, -4) and (3, 3, -2).

(Essay)
4.9/5
(26)

Identify the surface x2+y2z2=10- x ^ { 2 } + y ^ { 2 } - z ^ { 2 } = 10 .

(Multiple Choice)
4.8/5
(39)

Find two unit vectors that are orthogonal to both 1,1,1\langle 1 , - 1,1 \rangle and 0,2,2\langle0,2,2 \rangle .

(Short Answer)
4.8/5
(34)

Find an equation of a plane containing the points P(2, -1, 1), Q(5, 0, -1) and R(-2, 3, 3).

(Multiple Choice)
4.8/5
(33)

Find a unit vector orthogonal to both of the vectors {1,1,0}\{ 1 , - 1,0 \} and {1,2,3}\{ 1,2,3 \} .

(Multiple Choice)
4.9/5
(36)

Find a| \mathbf { a } | , a + b, ab\mathbf { a } - \mathbf { b } , 2a, and 3a + 4b given a=(3,2,1)\mathbf { a } = ( 3,2 , - 1 ) and b=0,6,7\mathrm { b } = \langle 0,6,7 \rangle .

(Essay)
4.8/5
(37)

Find a unit vector perpendicular to the plane x - 2y - 2z = 10.

(Multiple Choice)
4.8/5
(38)

Find the length of the vector from the point P(1, 2) to the point Q(3, 4).

(Multiple Choice)
4.9/5
(36)

Let u×v=ij+2k\mathbf { u } \times \mathbf { v } = \mathbf { i } - \mathbf { j } + 2 \mathbf { k } . Find u(u×v)\mathbf { u } \cdot ( \mathbf { u } \times \mathbf { v } ) ), if it exists.

(Short Answer)
4.8/5
(37)
Showing 101 - 120 of 269
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)