Exam 3: Differentiation Rules

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the value of the limit limx0tan2xx\lim _ { x \rightarrow 0 } \frac { \tan 2 x } { x } .

Free
(Multiple Choice)
4.8/5
(30)
Correct Answer:
Verified

D

Differentiate the following functions: (a) f(x)=exxf ( x ) = \frac { e ^ { x } } { x } (b) f(x)=(x+2)(2x4)f ( x ) = ( \sqrt { x } + 2 ) ( 2 \sqrt { x } - 4 ) (c) f(x)=e+3xef ( x ) = e + 3 x ^ { e } (d ) f(x)=πe(x2x)f ( x ) = \pi ^ { e } \left( x ^ { 2 } - x \right)

Free
(Essay)
4.9/5
(38)
Correct Answer:
Verified

(a) f(x)=xexexx2f ^ { \prime } ( x ) = \frac { x e ^ { x } - e ^ { x } } { x ^ { 2 } } (b) f(x)=2f ^ { \prime } ( x ) = 2 (c) f(x)=3exe1f ^ { \prime } ( x ) = 3 e x ^ { e - 1 } (d) f(x)=πe(2x1)f ^ { \prime } ( x ) = \pi ^ { e } ( 2 x - 1 )

Use implicit differentiation to find y if 2xy=y2y ^ { \prime \prime } \text { if } 2 x y = y ^ { 2 } .

Free
(Essay)
4.7/5
(35)
Correct Answer:
Verified

y=y22xy(yx)3y ^ { \prime \prime } = \frac { y ^ { 2 } - 2 x y } { ( y - x ) ^ { 3 } }

Find the derivative of f(t)=t5+t25f ( t ) = \sqrt { t ^ { 5 } } + \sqrt [ 5 ] { t ^ { 2 } } .

(Multiple Choice)
4.8/5
(41)

Suppose that h(x)=f(g(x))h ( x ) = f ( g ( x ) ) and g(3)=6g ( 3 ) = 6 , g(3)=4,g ^ { \prime } ( 3 ) = 4 , f(3)=2,f(6)=7f ^ { \prime } ( 3 ) = 2 , f ^ { \prime } ( 6 ) = 7 Find the value of h(3)h ^ { \prime } ( 3 ) \text {. }

(Multiple Choice)
4.9/5
(38)

Let f(x)=sin1(4x)f ( x ) = \sin ^ { - 1 } \left( \frac { 4 } { x } \right) . Find the value of f(8)f ^ { \prime } ( 8 ) .

(Multiple Choice)
4.9/5
(41)

At what value of t does the curve x=2t3t2,y=t23tx = 2 t - 3 t ^ { 2 } , y = t ^ { 2 } - 3 t have a vertical tangent?

(Multiple Choice)
4.9/5
(29)

Find the x-coordinate(s) of the point(s) where the tangent to the curve y=(91x2)2y = \left( 9 - \frac { 1 } { x ^ { 2 } } \right) ^ { 2 } has zero slope.

(Essay)
4.7/5
(39)

If x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 find the value of dydx\frac { d y } { d x } at the point (3, 4).

(Multiple Choice)
4.9/5
(36)

Let f(x)=tan1xf ( x ) = \tan ^ { - 1 } x . Find the value of f(1)f ^ { \prime } ( 1 ) .

(Multiple Choice)
4.8/5
(35)

If f(x)=x213, find f(3)f ( x ) = \sqrt [ 3 ] { x ^ { 2 } - 1 } , \text { find } \mathrm { f } ^ { \prime \prime } ( 3 )

(Multiple Choice)
4.8/5
(32)

The population of a bacteria colony after t hours is given by P(t) = 2000e0.087t2000 e ^ { 0.087 t } . Find the growth rate of the colony when t = 16 hours.

(Multiple Choice)
4.8/5
(31)

Find an equation in x and y for the tangent line to the curve x=et,y=etx = e ^ { t } , \mathrm { y } = \mathrm { e } ^ { - t } at the point (13,3)\left( \frac { 1 } { 3 } , 3 \right)

(Essay)
4.9/5
(38)

Find an equation of the tangent to the curve y=4x3+x2y = \frac { 4 x } { \sqrt { 3 + x ^ { 2 } } } at x=1x = 1 .

(Essay)
5.0/5
(32)

Find the interval on which the graph of f(x)=ln(x2+1)f ( x ) = \ln \left( x ^ { 2 } + 1 \right) is concave upward.

(Multiple Choice)
4.9/5
(32)

Determine the equation of another tangent line to this curve that is parallel to the given tangent line.

(Essay)
5.0/5
(30)

(a) Find the linearization of the function f (x) = sin x when x = 0.(b) Use these results to approximate sin (0.05) and sin (-0.005).

(Essay)
4.8/5
(41)

If f(x)=x+x, find f(1)f ( x ) = \sqrt { x + \sqrt { x } } , \text { find } f ^ { \prime } ( 1 )

(Multiple Choice)
4.8/5
(35)

Let y=x4+x2+1y = x ^ { 4 } + x ^ { 2 } + 1 , x=1x = 1 ,and dx = 1. Find the value of the differential dy.

(Multiple Choice)
4.9/5
(37)

The relationship between the rate of a certain chemical reaction and temperature under certain circumstances is given by R(T)=0.1(0.05T3+4T2+120)R ( T ) = 0.1 \left( - 0.05 T ^ { 3 } + 4 T ^ { 2 } + 120 \right) grams/sec, where R is the rate of reaction and T is the temperature (in žC). (a) Find the temperature T at which the reaction rate reaches its maximum. (b) What is the maximum reaction rate?

(Essay)
4.8/5
(34)
Showing 1 - 20 of 248
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)