Exam 9: Vectors and the Geometry of Space

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the point at which the two lines r=1,1,0}+t1,1,2}\mathbf { r } = \langle 1,1,0 \} + t \langle 1 , - 1,2 \} and r=2,0,2}+s(1,1,0}\mathbf { r } = \langle 2,0,2 \} + s ( - 1,1,0 \} intersect.

(Multiple Choice)
4.9/5
(33)

Identify the trace of the surface x=2y2+3z2x = 2 y ^ { 2 } + 3 z ^ { 2 } in the plane x = 1.

(Multiple Choice)
4.9/5
(39)

Find the domain of the function f(x, y) = ln(xy2)\ln \left( x - y ^ { 2 } \right) .

(Multiple Choice)
4.8/5
(41)

Given two distinct nonzero vectors a and b, is it always true that projab=projba\left| \operatorname { proj } _ { \mathbf { a } } \mathbf { b } \right| = \left| \operatorname { proj } _ { \mathbf { b } } \mathbf { a } \right| ?

(Short Answer)
4.7/5
(31)

Identify the surface x=y2+2z2x = y ^ { 2 } + 2 z ^ { 2 } .

(Multiple Choice)
4.9/5
(33)

Find the distance between the sphere (x1)2+(y+1)2+z2=14( x - 1 ) ^ { 2 } + ( y + 1 ) ^ { 2 } + z ^ { 2 } = \frac { 1 } { 4 } and the sphere (x3)2+(y+2)2+(z+2)2=1( x - 3 ) ^ { 2 } + ( y + 2 ) ^ { 2 } + ( z + 2 ) ^ { 2 } = 1

(Essay)
4.9/5
(43)

Let f(x, y) = 4x22y2\sqrt { 4 - x ^ { 2 } - 2 y ^ { 2 } } (a) Evaluate f(1,1)f ( - 1 , - 1 ) .(b) Find the domain of f.(c) Find the range of f.

(Essay)
4.8/5
(37)

Find a unit vector orthogonal to the plane through the points (1, 0, 0), (0, 1, 0), and (0, 2, 2).

(Multiple Choice)
4.9/5
(40)

Let l and ll ^ { \prime } be two lines in space given by the equations x = 3 + t x = -1 + t l: y = 1 - t ll ^ { \prime } : y = 2t z = 2t z = 1 + kt Find all values of k (if any) for which l and ll ^ { \prime } are parallel.

(Short Answer)
4.8/5
(30)
Showing 261 - 269 of 269
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)