Exam 9: Vectors and the Geometry of Space

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Describe the surface whose equation in cylindrical coordinates is θ \theta = 3.

(Multiple Choice)
4.7/5
(36)

Find an equation of a plane containing the point P(2, -1, 1) and the z-axis.

(Multiple Choice)
5.0/5
(36)

What does the fact that aa\mathbf { a } \cdot \mathbf { a } = 0 imply about the vector a?

(Short Answer)
4.8/5
(38)

Let f(x, y) = 4y24 - y ^ { 2 } (a) Evaluate f(1,1)f ( - 1 , - 1 ) .(b) Find the domain of f.(c) Find the range of f.

(Essay)
4.9/5
(37)

Explain why there is no vector a such that 1,0,4×a=0,1,1\langle 1,0,4 \rangle \times \mathbf { a } = \langle 0,1,1 \rangle

(Essay)
4.8/5
(29)

Find the length of the vector 2a+3b2 a + 3 b , where a=1,1\mathbf { a } = \langle 1,1 \rangle and b=1,2\mathbf { b } = \langle - 1,2 \rangle .

(Multiple Choice)
4.9/5
(34)

Let a = 0,1,2\langle 0,1,2 \rangle , b = 1,1,3\langle- 1 , - 1,3 \rangle , c = 2,4,2\langle 2,4 , - 2 \rangle , and d = 1,3,3\langle 1,3 , - 3 \rangle . Find (ad)b(bc)d(\mathbf{a} \cdot \mathbf{d}) \mathbf{b}-(\mathbf{b} \cdot \mathbf{c}) \mathbf{d} .

(Short Answer)
4.9/5
(40)

For which values of t are a = t+2,t,t\langle t + 2 , t , t\rangle and b = t2,t+1,t\langle t - 2 , t + 1 , t \rangle orthogonal?

(Short Answer)
4.9/5
(33)

Identify the trace of the surface x=y2+z2x = y ^ { 2 } + z ^ { 2 } in the plane y = 0.

(Multiple Choice)
4.9/5
(43)

Let f(x, y) = 4x2\sqrt { 4 - x ^ { 2 } } (a) Evaluate f(1,1)f ( - 1 , - 1 ) .(b) Find the domain of f.(c) Find the range of f.

(Essay)
4.9/5
(28)

Do the two lines x1(t)=1,1,3}+t(1,0,2}\mathrm { x } _ { 1 } ( t ) = \langle 1,1,3 \} + t ( - 1,0,2 \} and x2=1,1,4+s2,0,1}\mathrm { x } _ { 2 } = \langle - 1,1,4 \rangle + s \langle 2,0,1 \} intersect? If so, find the point of intersection.

(Essay)
4.7/5
(32)

Find the domain of the function f(x, y) = xy2\sqrt { x - y ^ { 2 } } .

(Multiple Choice)
4.9/5
(32)

Let f(x, y) = x2+2xy+y2x ^ { 2 } + 2 x y + y ^ { 2 } . If x = 2, find f(x, 2x).

(Multiple Choice)
4.8/5
(37)

Let a be the vector shown below. Find the horizontal component b and the vertical component c of a if a = 3. Let a be the vector shown below. Find the horizontal component b and the vertical component c of a if a = 3.

(Essay)
4.9/5
(43)

Find the volume of the parallelepiped spanned by the vectors 2i + 3j + 5k, 3i - j + 4k, and -i - 2j + 3k.

(Short Answer)
4.8/5
(43)

Identify the graph of the function f(x, y) = 3x2y23 - x ^ { 2 } - y ^ { 2 } .

(Multiple Choice)
4.7/5
(41)

Find the coordinate of the terminal point of a vector a=3,2,2}\mathbf { a } = \langle 3 , - 2,2 \} whose initial point is (1,1,3)( 1 , - 1,3 ) .

(Multiple Choice)
4.7/5
(25)

Let a and b be vectors such that a| \mathbf { a } | = 2 and b| \mathbf { b } | = 3. Assume that the angle between a and b is π3\frac { \pi } { 3 } . Find (2a+3b)×(a+4b)| ( 2 \mathbf { a } + 3 \mathbf { b } ) \times ( \mathbf { a } + 4 \mathbf { b } ) | .

(Short Answer)
5.0/5
(26)

Find the area of quadrilateral ABCD. Note that ABCD is not a parallelogram. Find the area of quadrilateral ABCD. Note that ABCD is not a parallelogram.

(Short Answer)
5.0/5
(30)

Find the coordinate of the terminal point of a vector a=4,3\mathbf { a } = \langle 4 , - 3 \rangle whose initial point is (1,1)( 1,1 ) .

(Multiple Choice)
4.9/5
(43)
Showing 181 - 200 of 269
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)