Exam 9: Vectors and the Geometry of Space

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Describe in words the region of R3\mathbb { R } ^ { 3 } represented by the inequality 1x2+y2+z2251 \leq x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 25 .

(Essay)
4.9/5
(34)

Find the coordinates of the point(s) of intersection of the line x = 1 - t, y = 1 - t, z = 4t and the surface z = x2+2y2x ^ { 2 } + 2 y ^ { 2 } .

(Essay)
4.8/5
(38)

Find the range of the function f(x, y) = xy2\sqrt { x - y ^ { 2 } } .

(Multiple Choice)
4.9/5
(40)

Find the distance from the point P(1, 1, 1) to the line passing through the points Q(2, 0, 1) and R(0, 3, 2).

(Short Answer)
4.8/5
(37)

Identify the surface x=y2z2x = y ^ { 2 } - z ^ { 2 } .

(Multiple Choice)
4.8/5
(35)

Find the distance between the sphere x2+y2+z2=36x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 36 and the sphere (x2)2+(y+1)2+(z2)2=4( x - 2 ) ^ { 2 } + ( y + 1 ) ^ { 2 } + ( z - 2 ) ^ { 2 } = 4

(Essay)
4.9/5
(37)

Consider the points P = (1, 2, 3), Q = (2, -1, 0) , and R = (-1, 4, 1). Find the area of the triangle PQR.

(Short Answer)
4.8/5
(32)

Determine whether the lines L1: x = 1 + 7t, y = 3 + t, z = 5 - 3t and L2: x = 4 - t, y = 4, z = 7 + 2t are parallel, intersecting or skew. If they intersect, find the point of intersection.

(Short Answer)
4.8/5
(37)

Find the range of the function f(x, y) = ln(xy2)\ln \left( x - y ^ { 2 } \right) .

(Multiple Choice)
4.8/5
(37)

New Orleans is situated at latitude 30° N and longitude 90° W, and New York is situated at latitude 41° N and longitude 74° W. Find the distance from New Orleans to New York, assuming that the radius of the earth is 3960 miles.

(Short Answer)
4.8/5
(40)

Describe the surface whose equation in cylindrical coordinates is β=3\beta = 3 .

(Multiple Choice)
4.8/5
(29)

Find ab\mathbf { a } \cdot \mathbf { b } , given that a| \mathbf { a } | = 2, b| \mathbf { b } | = 3, and the angle between a and b is 5π6\frac { 5 \pi } { 6 } .

(Multiple Choice)
4.9/5
(37)

Identify the surface x2=y2+z2x ^ { 2 } = y ^ { 2 } + z ^ { 2 } .

(Multiple Choice)
4.8/5
(38)

Let a=1| \mathbf { a } | = 1 and b=2| \mathbf { b } | = 2 and the angle between a and b be 150°. Find (i) ab\mathbf { a } \cdot \mathbf { b } (ii) b(3a+b)\mathbf { b } \cdot ( 3 \mathbf { a } + \mathbf { b } ) (iii) (a+b)(ab)( \mathbf { a } + \mathbf { b } ) \cdot ( \mathbf { a } - \mathbf { b } ) (iv) 2ab2| 2 a - b | ^ { 2 }

(Essay)
4.8/5
(29)

Find the equation of the plane containing the points (5, 3, 1), (1, 8, 4), and (-1, 3, -2).

(Essay)
4.9/5
(29)

Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B = (1,0,π4)\left( 1,0 , \frac { \pi } { 4 } \right) , and C = (1,π2,π3)\left( 1 , \frac { \pi } { 2 } , \frac { \pi } { 3 } \right) .(a) Find the angle between OA\overrightarrow { O A } and OB\overrightarrow { O B } .(b) Find the angle between OA\overrightarrow { O A } and OC\overrightarrow { O C } .(c) Find the angle between OB\overrightarrow { O B } and OC\overrightarrow { O C } .

(Essay)
5.0/5
(44)

Find the intersections of the line passing through the points (-1, 3, 4) and (3, 5, 2) with the yz-plane, the xz-plane, and the xy-plane.

(Short Answer)
4.9/5
(30)

Let L be the line given by x = 2 - t, y = 1 + t, and z = 1 + 2t. L intersects the plane 2x + y - z = 1 at the point P = (1, 2, 3). Find parametric equations for the line through P which lies in the plane and is perpendicular to L.

(Essay)
4.9/5
(43)

Given points A = (5,π6,π)\left( \sqrt { 5 } , \frac { \pi } { 6 } , \pi \right) and B = (2,π4,π2)\left( 2 , \frac { \pi } { 4 } , \frac { \pi } { 2 } \right) in spherical coordinates, find the distance between the two points.

(Essay)
4.9/5
(41)

Find a parametric equation of the line which is the intersection of the planes - x + 3y + z = 7 and x + y = 1.

(Essay)
4.7/5
(44)
Showing 81 - 100 of 269
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)