Exam 13: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Consider the vector field F(x,y)=yx2+y2i+xx2+y2j\mathbf { F } ( x , y ) = - \frac { y } { x ^ { 2 } + y ^ { 2 } } \mathbf { i } + \frac { x } { x ^ { 2 } + y ^ { 2 } } \mathbf { j } (a) Compute the curl of F.(b) Compute the divergence of F.

Free
(Short Answer)
4.8/5
(29)
Correct Answer:
Verified

(a) 0
(b) 0

Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } where F(x,y,z)=(2xy+lnz)i+(x2+1+zcosyz)j+(x2+ycosyz)k\mathbf { F } ( x , y , z ) = ( 2 x y + \ln z ) \mathbf { i } + \left( x ^ { 2 } + 1 + z \cos y z \right) \mathbf { j } + \left( \frac { x } { 2 } + y \cos y z \right) \mathbf { k } and C is the curve x=3cost+1x = \sqrt { 3 \cos t + 1 } , y=2sin3ty = 2 \sin ^ { 3 } t , z=sint+costz = \sin t + \cos t , 0tπ20 \leq t \leq \frac { \pi } { 2 } .

Free
(Essay)
4.7/5
(31)
Correct Answer:
Verified

f(x,y,z)=x2y+y+sin(yz)+xlnz2,0,11,2,1=sin2+4f ( x , y , z ) = x ^ { 2 } y + y + \sin ( y z ) + \left. x \ln z \right| _ { 2,0,1 } ^ { 1,2,1 } = \sin 2 + 4

Find the mass of the sphere x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 whose density at each point is proportional to its distance to the xyx y - plane.

Free
(Short Answer)
4.9/5
(30)
Correct Answer:
Verified

16πk16 \pi k

Find the z-coordinate of the centroid of the upper hemisphere with uniform density whose equation is given by z=25x2y2z = \sqrt { 25 - x ^ { 2 } - y ^ { 2 } } .

(Short Answer)
4.8/5
(34)

Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } where F(x,y)=(yexy+siny)i+(xexy+xcosy)j\mathbf { F } ( x , y ) = \left( y e ^ { x y } + \sin y \right) \mathbf { i } + \left( x e ^ { x y } + x \cos y \right) \mathbf { j } and C is the curve x=3cost+1x = \sqrt { 3 \cos t + 1 } , y=2sin3ty = 2 \sin ^ { 3 } t , 0tπ20 \leq t \leq \frac { \pi } { 2 } .

(Essay)
4.9/5
(31)

For what value of the constant bb is there a function f(x,y)f ( x , y ) such that f=bx2y2i+x3yj\nabla f = b x ^ { 2 } y ^ { 2 } \mathbf { i } + x ^ { 3 } y \mathbf { j } ?

(Multiple Choice)
4.8/5
(33)

Find the gradient vector field of f(x,y,z)=xln(yz)f ( x , y , z ) = x \ln ( y - z ) .

(Essay)
4.7/5
(40)

For what value of the constant b is the vector field F=bxyi+x2yj\mathbf { F } = b x y \mathbf { i } + x ^ { 2 } y \mathbf { j } irrotational?

(Multiple Choice)
4.8/5
(35)

Evaluate CFdr\int _ { C } \mathbf { F } d \mathbf { r } where F(x,y)=(arctany,xy21+y2)\mathrm { F } ( x , y ) = \left( \arctan y , - \frac { x y ^ { 2 } } { 1 + y ^ { 2 } } \right) and the curve C is a triangle from (0,0)( 0,0 ) , to (2,2)( 2,2 ) , to (1,4)( 1,4 ) , then back to (0,0)( 0,0 ) .

(Multiple Choice)
4.8/5
(39)

Evaluate CFdr\int _ { C } \mathbf { F } d \mathbf { r } where F(x,y)=(arctany,xy21+y2)\mathrm { F } ( x , y ) = \left( \arctan y , - \frac { x y ^ { 2 } } { 1 + y ^ { 2 } } \right) and the curve C is given by C : x=2cost,y=2sint,0t2πx = 2 \cos t , y = 2 \sin t , 0 \leq t \leq 2 \pi .

(Multiple Choice)
4.9/5
(34)

Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where F(x,y,z)=yi+xj+2zk\mathbf { F } ( x , y , z ) = - y \mathbf { i } + x \mathbf { j } + 2 z \mathbf { k } and S is the upper half of the sphere x2+y2+z2=25x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25 , with upward orientation.

(Short Answer)
4.8/5
(36)

Evaluate cFdr\int _ { c } \mathbf { F } d \mathbf { r } where F(x,y)=(yx2+y2,xx2+y2)\mathbf { F } ( x , y ) = \left( \frac { - y } { x ^ { 2 } + y ^ { 2 } } , \frac { x } { x ^ { 2 } + y ^ { 2 } } \right) and the curve CC is given by C:x=5sint,y=5cost,0t4πC : x = 5 \sin t , y = 5 \cos t , 0 \leq t \leq 4 \pi .

(Multiple Choice)
4.8/5
(30)

Use Stokes' Theorem to evaluate C(3z2y)dx+(4x2y)dy+(z+2y)dz\int _ { C } ( 3 z - 2 y ) d x + ( 4 x - 2 y ) d y + ( z + 2 y ) d z where C is the circle x=3cost,y=3sint,z=2,0t2πx = 3 \cos t , y = 3 \sin t , z = 2,0 \leq t \leq 2 \pi .

(Multiple Choice)
4.7/5
(29)

Determine whether F(x,y,z)=x2cos(x3),yey2,zsinz\mathrm { F } ( x , y , z ) = \left\langle x ^ { 2 } \cos \left( x ^ { 3 } \right) , y e ^ { y ^ { 2 } } , z \sin z \right\rangle is conservative and if so, find a potential function.

(Essay)
4.9/5
(37)

Show that C2xdx+2ydy+2zdz=aa\int _ { C } 2 x d x + 2 y d y + 2 z d z = \mathbf { a } \cdot \mathbf { a } , where a=a1i+a2j+a3k\mathbf { a } = a _ { 1 } \mathbf { i } + a _ { 2 } \mathbf { j } + a _ { 3 } \mathbf { k } , and C is any path from (0,0,0)( 0,0,0 ) to (a1,a2,a3)\left( a _ { 1 } , a _ { 2 } , a _ { 3 } \right) .

(Essay)
4.9/5
(32)

Let F(x,y,z)=zxy,zyx,ln(xy)\mathbf { F } ( x , y , z ) = \left\langle \frac { z } { x - y } , \frac { z } { y - x } , \ln ( x - y ) \right\rangle , find (×F)\nabla \cdot ( \nabla \times \mathbf { F } ) at the point (1,3,1)( 1,3,1 ) .

(Multiple Choice)
4.9/5
(34)

Find a formula for the vector field graphed below. (There are many possible answers.) Find a formula for the vector field graphed below. (There are many possible answers.)

(Essay)
4.8/5
(41)

Evaluate the line integral Cxdx+ydy\int _ { C } x d x + y d y , where CC is the curve x=t,y=t3,1t2x = t , y = t ^ { 3 } , 1 \leq t \leq 2 .

(Multiple Choice)
4.8/5
(44)

Evaluate the surface integral S(y2+z2)dS\iint _ { S } \left( y ^ { 2 } + z ^ { 2 } \right) d S , where S is the part of the paraboloid x=4y2z2x = 4 - y ^ { 2 } - z ^ { 2 } that lies in front of the plane x=0x = 0 .

(Short Answer)
4.9/5
(41)

Evaluate C11+xds\int _ { C } \frac { 1 } { 1 + x } d s where the curve CC is given by x=t,y=23t32,0t3x = t , y = \frac { 2 } { 3 } t ^ { \frac { 3 } { 2 } } , 0 \leq t \leq 3 .

(Multiple Choice)
4.9/5
(44)
Showing 1 - 20 of 240
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)