Exam 2: Limits and Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

If a ball is thrown into the air with a velocity of 80 ft/s, its height in feet after t seconds is given by s(t) = 80t - 16t2. It will be at maximum height when its instantaneous velocity is zero. Find its average velocity from the time it is thrown (t = 0) to the time it reaches its maximum height.

(Multiple Choice)
4.9/5
(32)

Given the graph of y=f(x)y = f ^ { \prime } ( x ) below, select a graph which could be that of y = f (x).  Given the graph of  y = f ^ { \prime } ( x )  below, select a graph which could be that of y = f (x).

(Multiple Choice)
4.9/5
(34)

A car on a test track accelerates from 0 ft/s to 208 ft/s in 8 seconds. The car's velocity is given in the table below: t(s) 0 1 2 3 4 5 6 7 8 v(t)(ft/s) 0 18 47 77 104 132 163 184 208 (a) Find the car's average acceleration for the following time intervals: (i) [4; 6] (ii) [4; 5] (iii) [3; 4] (b) Estimate the car's acceleration at t = 4.

(Essay)
4.9/5
(36)

Consider the function f(x)=x28x+15x29f ( x ) = \frac { x ^ { 2 } - 8 x + 15 } { x ^ { 2 } - 9 } Make an appropriate table of values in order to determine the indicated limits: (a) limx3+f(x)\lim _ { x \rightarrow - 3 ^ { + } } f ( x ) (b) limx3f(x)\lim _ { x \rightarrow - 3 ^ { - } } f ( x ) (c) Does limx3f(x)\varliminf _ { x \rightarrow - 3 } f ( x ) exist? If so, what is its value? If not, explain.

(Essay)
4.9/5
(37)

A weight is attached to a spring. Suppose the position (in meters) of the weight above the floor t seconds after it is released is given by P(t)=0.5sin(πt+n2)+1.2P ( t ) = 0.5 \sin \left( \pi t + \frac { n } { 2 } \right) + 1.2 (a) What is the position of the weight when t = 2? When t = 3? When t = 4? (b) What is the average rate of change of the position of the weight (in m/s) over the time interval [2, 4]? Over the time interval [2, 3]? (c) The average rate of change of the position of the weight over the time period [2; 6] is 0. Does this mean that the weight has come to a stop? Why or why not?

(Essay)
4.9/5
(38)

Find the constant(s) c that make(s) the function f(x)={c2x2 if x<22(cx) if x2f ( x ) = \left\{ \begin{array} { l l } c ^ { 2 } - x ^ { 2 } & \text { if } x < 2 \\2 ( c - x ) & \text { if } x \geq 2\end{array} \right. continuous on (,)( - \infty , \infty ) .

(Multiple Choice)
4.8/5
(25)

Given the graph of y = f (x) below, select a graph which best represents the graph of y=f(x)y = f ^ { \prime } ( x )  Given the graph of y = f (x) below, select a graph which best represents the graph of  y = f ^ { \prime } ( x )

(Multiple Choice)
4.7/5
(34)

The point P(1,3)P ( 1 , \sqrt { 3 ) } lies on the curve y=4x2y = \sqrt { 4 - x ^ { 2 } } Let Q be the point (x,4x2)\left( x , \sqrt { 4 - x ^ { 2 } } \right) (a) What is the slope of the secant line PQ (correct to 6 decimal places) for the following values of x? (i) 2 (ii) 1.5 (iii) 1.1 (iv) 1.01 (v) 1.001 (vi) 0 (vii) 0.5 (viii) 0.9 (ix) 0.99 (x) 0.999 (b) Use your results from part (a) to estimate the slope of the tangent line to the graph of y=4x2 at x=1y = \sqrt { 4 - x ^ { 2 } \text { at } x = 1 }

(Essay)
4.7/5
(33)

Find the value of the limit limx(x2+2x2x)\lim _ { x \rightarrow - \infty } \left( \sqrt { x ^ { 2 } + 2 x } - 2 x \right)

(Multiple Choice)
4.8/5
(29)

At what value(s) of x is the function f(x)={x2+4x+5 if x<212x if 2x21+x2 if x>2f ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } + 4 x + 5 & \text { if } x < - 2 \\\frac { 1 } { 2 } x & \text { if } - 2 \leq x \leq 2 \\1 + \sqrt { x - 2 } & \text { if } x > 2\end{array} \right.

(Essay)
4.8/5
(31)

   -For the function whose graph is given above, determine  \lim _ { x \rightarrow 2 } f ( x ) -For the function whose graph is given above, determine limx2f(x)\lim _ { x \rightarrow 2 } f ( x )

(Multiple Choice)
4.8/5
(35)

Find the limit.(a) limx1x2\lim _ { x \rightarrow \infty } \frac { 1 } { x ^ { 2 } } (b) limx(x2+xx2x)\lim _ { x \rightarrow \infty } \left( \sqrt { x ^ { 2 } + x } - \sqrt { x ^ { 2 } - x } \right) (c) limx(x3x2)\lim _ { x \rightarrow - \infty } \left( x - 3 x ^ { 2 } \right)

(Short Answer)
4.9/5
(41)

Find the value of the limit limx9x3x9\lim _ { x \rightarrow 9 } \frac { \sqrt { x - 3 } } { x - 9 }

(Multiple Choice)
4.9/5
(35)

Find the value of the limit limx1(x17x+3)\lim _ { x \rightarrow 1 } \left( x ^ { 17 } - x + 3 \right)

(Multiple Choice)
4.8/5
(41)

Given the following information about limits, select a graph which could be the graph of y = f (x). f(x)=f(x)=0f(x)=f(x)=\infty f(x)=f(x)=-\infty

(Multiple Choice)
4.9/5
(43)

Given the following information about limits, select a graph which could be the graph of y = f (x). f(x)=f(x)=0f(x)=f(x)=\infty f(x)=f(x)=-\infty

(Multiple Choice)
4.9/5
(36)

Using the graph below, determine the following:  Using the graph below, determine the following:   (a)  \lim _ { x \rightarrow \infty } f ( x )  (b)  \lim _ { x \rightarrow 2 ^ { + } } f ( x )  (c)  \lim _ { x \rightarrow 2 ^ { - } } f ( x )  (d)  f _ { x \rightarrow - \infty } f ( x )  (e)  \lim _ { x \rightarrow 0 ^ { + } } f ( x )  (f)  \lim _ { x \rightarrow 0 ^ { - } } f ( x )  (g) Find the horizontal asymptote(s) of the graph of y = f (x).(h) Find the vertical asymptote(s) of the graph of y = f (x). (a) limxf(x)\lim _ { x \rightarrow \infty } f ( x ) (b) limx2+f(x)\lim _ { x \rightarrow 2 ^ { + } } f ( x ) (c) limx2f(x)\lim _ { x \rightarrow 2 ^ { - } } f ( x ) (d) fxf(x)f _ { x \rightarrow - \infty } f ( x ) (e) limx0+f(x)\lim _ { x \rightarrow 0 ^ { + } } f ( x ) (f) limx0f(x)\lim _ { x \rightarrow 0 ^ { - } } f ( x ) (g) Find the horizontal asymptote(s) of the graph of y = f (x).(h) Find the vertical asymptote(s) of the graph of y = f (x).

(Essay)
4.9/5
(32)

   -For the function whose graph is given above, determine  \lim _ { x \rightarrow 2 ^ { - } } f ( x )   -For the function whose graph is given above, determine limx2f(x)\lim _ { x \rightarrow 2 ^ { - } } f ( x )

(Multiple Choice)
4.7/5
(50)

The definition of continuity of f (x) at a point requires three things. List these three conditions, and in each case give an example (a graph or a formula) which illustrates how this condition can fail at x = a.

(Essay)
4.9/5
(36)

At what value(s) of x does the function (x+1)2x21\frac { ( x + 1 ) ^ { 2 } } { x ^ { 2 } - 1 } have a removable discontinuity?

(Multiple Choice)
5.0/5
(41)
Showing 21 - 40 of 127
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)