Exam 10: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the arc length of the curve given by r(t)=(t,62t2,t3)0t1\mathbf { r } ( t ) = \left( t , \frac { \sqrt { 6 } } { 2 } t ^ { 2 } , t ^ { 3 } \right) 0 \leq t \leq 1

(Short Answer)
4.9/5
(34)

If a particle moves in a plane with constant acceleration, show that its path is a straight line or a parabola.

(Essay)
4.8/5
(45)

Let the velocity of a particle be v(t)=i+tj\mathbf { v } ( t ) = \mathbf { i } + t \mathbf { j } , and let its position when t = 0 be r(0)=j+2k\mathbf { r } ( 0 ) = \mathbf { j } + 2 \mathbf { k } . Find its position when t = 2.

(Multiple Choice)
4.8/5
(42)

Find the equation of the plane normal to r(t)=etsinπ2t,etcosπ2t,t2 when t=1\mathbf { r } ( t ) = \left\langle e ^ { t } \sin \frac { \pi } { 2 } t , e ^ { t } \cos \frac { \pi } { 2 } t , t ^ { 2 } \right\rangle \text { when } t = 1

(Essay)
4.9/5
(36)

Find the point(s) on the curve described by the vector function r(t)=t2+2t,t312t\mathbf { r } ( t ) = \left\langle t ^ { 2 } + 2 t , t ^ { 3 } - 12 t \right\rangle where the tangent vector is horizontal or vertical.

(Essay)
4.7/5
(40)

Find the unit tangent vector to the curve r (t) = {e2tcost,e2tsint,e2t}\left\{ e ^ { 2 t } \cos t , e ^ { 2 t } \sin t , e ^ { 2 t } \right\} at the point where t = π2\frac { \pi } { 2 } .

(Multiple Choice)
4.8/5
(34)

Identify the geometric object that is represented by parametric equations r(t,s)=scost,ssint,t\mathbf { r } ( t , s ) = \langle s \cos t , s \sin t , t \rangle .

(Multiple Choice)
4.8/5
(31)

Consider the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } . Which of the following space curves have as their range points lying on this paraboloid?

(Multiple Choice)
4.9/5
(45)

Evaluate the integral 01(ti2t2j+etk)dt\int _ { 0 } ^ { 1 } \left( t \mathbf { i } - 2 t ^ { 2 } \mathbf { j } + e ^ { - t } \mathbf { k } \right) d t .

(Multiple Choice)
4.7/5
(46)

Find parametric equations of the tangent line to the curve r(t)=t,2cost,2sint\mathbf { r } ( t ) = \langle t , \sqrt { 2 } \cos t , \sqrt { 2 } \sin t \rangle at (π4,1,1)\left( \frac { \pi } { 4 } , 1,1 \right) . Then sketch the curve and its tangent line.

(Essay)
4.9/5
(44)

Find r (1) if r\mathbf { r } ^ { \prime } (t) = t2i+t3jt ^ { 2 } \mathbf { i } + t ^ { 3 } \mathbf { j } and r (0) = i.

(Multiple Choice)
4.9/5
(39)

A person is standing 80 feet from a tall cliff. She throws a rock at 80 feet per second at an angle of 45° from the horizontal. Neglecting air resistance and discounting the height of the person, how far up the cliff does it hit?

(Short Answer)
4.9/5
(36)

Find the arc length of the curve given by r(t)=2t,t2,lnt,1t3\mathbf { r } ( t ) = \left\langle 2 t , t ^ { 2 } , \ln t \right\rangle , 1 \leq t \leq 3

(Essay)
4.7/5
(30)

Find the domain of vector function r=(t2,ln(4t),tt3)\mathbf { r } = \left( \sqrt { t - 2 } , \ln ( 4 - t ) , \frac { t } { \sqrt { t - 3 } } \right)

(Multiple Choice)
4.9/5
(30)

Find the length of the curve r(t)=2t32,2t+1,5t0t3\mathbf { r } ( t ) = \left\langle 2 t ^ { \frac { 3 } { 2 } } , 2 t + 1 , \sqrt { 5 } t \right\rangle 0 \leq t \leq 3

(Multiple Choice)
4.8/5
(35)

Let the position function of a particle be r(t)=3sin2t,2cos2t,sin4t\mathbf { r } ( t ) = \langle 3 \sin 2 t , 2 \cos 2 t , - \sin 4 t \rangle . Find the speed of the particle when t=π4t = \frac { \pi } { 4 } .

(Multiple Choice)
4.8/5
(45)

Let the position function of a particle be r(t)=ti+t2j\mathbf { r } ( t ) = t \mathbf { i } + t ^ { 2 } \mathbf { j } . Find the normal component of the acceleration vector when t = 1.

(Multiple Choice)
4.8/5
(39)

Suppose C is the curve given by the vector function r(t)=t,t2,1t2\mathbf { r } ( t ) = \left\langle t , t ^ { 2 } , 1 - t ^ { 2 } \right\rangle . Find the unit tangent vector, the unit normal vector, and the curvature of C at the point where t = 1.

(Essay)
4.9/5
(27)

Find a parametric representation for the surface consisting of the upper half of the ellipsoid x2+5y2+z2=1x ^ { 2 } + 5 y ^ { 2 } + z ^ { 2 } = 1 .

(Multiple Choice)
4.8/5
(35)

At what point does the curve r(t)=(2t,et,et)\mathbf { r } ( t ) = \left( \sqrt { 2 } t , e ^ { t } , e ^ { - t } \right) have minimum curvature? What is the minimum curvature?

(Essay)
4.9/5
(36)
Showing 41 - 60 of 111
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)