Exam 10: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

At what point does the curve r(t)=t,t,1at2,a>0\mathbf { r } ( t ) = \left\langle t , t , 1 - a t ^ { 2 } \right\rangle , a > 0 have maximum curvature? What is the maximum curvature?

(Essay)
4.8/5
(32)

Evaluate the integral (sin3(2t)cos(2t))i+t2lntj+ettk\int \left( \sin ^ { 3 } ( 2 t ) \cos ( 2 t ) \right) \mathbf { i } + t ^ { 2 } \ln t \mathbf { j } + \frac { e ^ { \sqrt { t } } } { \sqrt { t } } \mathbf { k }

(Essay)
4.9/5
(33)

Find a parametric representation for the surface consisting of that part of the plane z = x + 3 that lies inside the cylinder x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 .

(Essay)
4.8/5
(28)

Consider the curve in the xy-plane defined parametrically by x = t3 - 3t, y = t2, z = 0. Sketch a rough graph of the curve. Consider the curve in the xy-plane defined parametrically by x = t<sup>3</sup> - 3t, y = t<sup>2</sup>, z = 0. Sketch a rough graph of the curve.

(Essay)
4.8/5
(40)

Find the unit tangent vector T(t) to the curve r (t) = sint,t,cost\langle \sin t , t , \cos t \rangle when t = 0.

(Multiple Choice)
4.7/5
(31)

Find the tangent vector r\mathbf { r } ^ { \prime } (t) of the function r (t) = (t,t,12t)\left( t , \sqrt { t } , \frac { 1 } { 2 \sqrt { t } } \right) when t = 14\frac { 1 } { 4 } .

(Multiple Choice)
4.8/5
(40)

Find the curvature KK of the curve y=2x2y = 2 x ^ { 2 } at x = 0.

(Multiple Choice)
4.9/5
(40)

Let the position function of a particle be r(t)=t2,2t,et\mathbf { r } ( t ) = \left\langle t ^ { 2 } , 2 t , e ^ { t } \right\rangle . Find the velocity of the particle when t = 1.

(Multiple Choice)
4.8/5
(42)

Find the arc length of the curve given by r(t)=t2,t3},0t1\mathbf { r } ( t ) = \left\langle t ^ { 2 } , t ^ { 3 } \right\} , 0 \leq t \leq 1

(Essay)
5.0/5
(33)

Find a parametric representation for the surface consisting of that part of the elliptic paraboloid x+y2+2z2=4x + y ^ { 2 } + 2 z ^ { 2 } = 4 that lies in front of the plane x = 0.

(Essay)
4.8/5
(31)

Find the unit tangent vector T(t) to the curve r (t) = (t21,3t2t4,2t)\left( t ^ { 2 } - 1,3 t ^ { 2 } - t ^ { 4 } , \frac { 2 } { t } \right) when t = 1.

(Multiple Choice)
4.7/5
(32)

Evaluate the integral 1ti+etj+t32k\int \frac { 1 } { t } \mathbf { i } + e ^ { - t } \mathbf { j } + t ^ { \frac { 3 } { 2 } } \mathbf { k }

(Essay)
4.9/5
(29)

Identify the surface with the vector equation r(u,v)=cosusinvi+sinusinvj+cosvk,0u2π,0vπ2\mathbf { r } ( u , v ) = \cos u \sin v \mathbf { i } + \sin u \sin v \mathbf { j } + \cos v \mathbf { k } , 0 \leq u \leq 2 \pi , 0 \leq v \leq \frac { \pi } { 2 } . (Hint: First consider x2+y2x ^ { 2 } + y ^ { 2 } .)

(Short Answer)
4.7/5
(33)

Find the length of the curve r(t)=sin2t,cos2t,2t320t1\mathbf { r } ( t ) = \left\langle \sin 2 t , \cos 2 t , 2 t ^ { \frac { 3 } { 2 } } \right\rangle 0 \leq t \leq 1

(Multiple Choice)
4.7/5
(38)

If u(t)=(tsint,t,t23)\mathbf { u } ( t ) = \left( - \sqrt { t } \sin t , t , t ^ { \frac { 2 } { 3 } } \right) and v(t)=(tsint,cos2t,t13)\mathbf { v } ( t ) = \left( - \sqrt { t } \sin t , \cos ^ { 2 } t , - t ^ { \frac { 1 } { 3 } } \right) , compute ddt(u(t)v(t))\frac { d } { d t } ( \mathbf { u } ( t ) \cdot \mathbf { v } ( t ) ) and ddt(u(t)u(t))\frac { d } { d t } ( \mathbf { u } ( t ) \cdot \mathbf { u } ( t ) ) .

(Essay)
4.9/5
(37)

A picture of a circular cylinder with radius a and height h is given below. Find a parametric representation of the cylinder. A picture of a circular cylinder with radius a and height h is given below. Find a parametric representation of the cylinder.

(Essay)
4.8/5
(29)

Identify the geometric object that is represented by parametric equations r(t)=1+t,3t,35t\mathbf { r } ( t ) = \langle 1 + t , 3 t , 3 - 5 t \rangle .

(Multiple Choice)
4.8/5
(28)

A particle is traveling along a helix whose vector equation is given by r(t)=Rcosαt,Rsinαt,βt\mathbf { r } ( t ) = \langle R \cos \alpha t , R \sin \alpha t , \beta t \rangle . Show that its velocity and acceleration are orthogonal at all times.

(Short Answer)
4.8/5
(40)

Find rt(t) if r(t)=tsint+costi+tt+1je1tk\mathbf { r } ^ { t } ( t ) \text { if } \mathbf { r } ( t ) = t \sin t + \cos t \mathbf { i } + \frac { t } { t + 1 } \mathbf { j } - e ^ { \frac { 1 } { t } } \mathbf { k }

(Essay)
4.8/5
(32)

The graphs of which three of the following four vector functions lie along the line y = 4 - x?

(Multiple Choice)
4.7/5
(30)
Showing 21 - 40 of 111
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)