Exam 10: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the unit tangent and the unit normal to the graph of the vector function r(t)=t22,2tt3 at t=1\mathbf { r } ( t ) = \left\langle t ^ { 2 } - 2,2 t - t ^ { 3 } \right\rangle \text { at } t = 1

(Essay)
4.7/5
(46)

A particle is traveling along a helix whose vector equation is given by r(t)=R1cosαt,R2sinαt,βt\mathbf { r } ( t ) = \left\langle R _ { 1 } \cos \alpha t , R _ { 2 } \sin \alpha t , \beta t \right\rangle , where R1R2R _ { 1 } \geq R _ { 2 } . Find its maximum and minimum speeds.

(Essay)
4.7/5
(33)

Let u(t)=2ti+sintjcostk and v(t)=i+t2jtk\mathbf { u } ( t ) = 2 t \mathbf { i } + \sin t \mathbf { j } - \cos t \mathbf { k } \text { and } \mathbf { v } ( t ) = \mathbf { i } + t ^ { 2 } \mathbf { j } - t \mathbf { k } Find ddt[u(t)×v(t)]\frac { d } { d t } [ \mathbf { u } ( t ) \times \mathbf { v } ( t ) ]

(Essay)
4.9/5
(36)

Find limt02t,cost,et\lim _ { t \rightarrow 0 } \left\langle 2 t , \cos t , e ^ { t } \right\rangle

(Multiple Choice)
4.9/5
(37)

Find a space curve which parametrizes the intersection of the paraboloid z = -x2 - y2 and the plane y = x.

(Essay)
4.8/5
(39)

Find the derivative of the vector function r (t) = t,1/t,et\left\langle t , 1 / t , e ^ { t } \right\rangle when t = 1.

(Multiple Choice)
4.9/5
(37)

Show that the curve with vector equation r (t) = 2 cos2t\cos ^ { 2 } t i + sin (2t) j + 2 sin t k is the curve of intersection of the surfaces (x1)2+y2=1( x - 1 ) ^ { 2 } + y ^ { 2 } = 1 and x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 Use this fact to sketch the curve.

(Essay)
4.9/5
(35)

Find the intersection point of curves r1=t,t2,t3} and r2=4t+6,4t2,7t\mathbf { r } _ { 1 } = \left\langle t , t ^ { 2 } , t ^ { 3 } \right\} \text { and } \mathbf { r } _ { 2 } = \left\langle 4 t + 6,4 t ^ { 2 } , 7 - t \right\rangle

(Multiple Choice)
4.8/5
(33)

Find the center of the osculating circle of the curve described by x=4sint,y=3t,z=4cost at (0,0,4)x = 4 \sin t , y = 3 t , z = 4 \cos t \text { at } ( 0,0,4 )

(Short Answer)
4.9/5
(42)

Show that if r(t)\mathbf { r } ^ { \prime } ( t ) and r(t)\mathbf { r } ^ { \prime \prime } ( t ) are parallel at some point on the curve described by r(t)\mathbf { r } ( t ) , then the curvature at that point is 0. Give an example of a curve r(t)\mathbf { r } ( t ) for which r(t)\mathbf { r } ^ { \prime } ( t ) and r(t)\mathbf { r } ^ { \prime \prime } ( t ) are always parallel.

(Essay)
4.8/5
(37)

Identify the surface with the vector equation r(u,v)=(1+2u+3v)i+(5u+4v)j+(3+5u7v)k\mathbf { r } ( u , v ) = ( 1 + 2 u + 3 v ) \mathbf { i } + ( 5 - u + 4 v ) \mathbf { j } + ( 3 + 5 u - 7 v ) \mathbf { k }

(Short Answer)
4.9/5
(34)

Let r(t)=5t,sin3t,cos3t\mathbf { r } ( t ) = \langle 5 t , \sin 3 t , \cos 3 t \rangle . Show that the velocity vector is perpendicular to the acceleration vector.

(Essay)
4.9/5
(40)

Find the equation of the osculating circle of the ellipse whose equation is given by (acost,a2sint,0) at t=0\left( \operatorname { acos } t , \frac { a } { 2 } \sin t , 0 \right) \text { at } t = 0

(Essay)
4.8/5
(32)

Find parametric equations of the tangent line to the curve r(t)=e2ti+2sin3tj\mathbf { r } ( t ) = e ^ { 2 t } \mathbf { i } + 2 \sin 3 t \mathbf { j } at t = 0.

(Essay)
4.9/5
(36)

Find the curvature of the ellipse whose equation is given by (acost,bsint,0)( a \cos t , b \sin t , 0 )

(Essay)
4.7/5
(39)

Find the unit normal vector N(t) to the curve r (t) = sint,t,cost\langle \sin t , t , \cos t \rangle when t = 0.

(Multiple Choice)
4.8/5
(37)

Find a parametric representation for the surface z=x2+y2z = x ^ { 2 } + y ^ { 2 }

(Multiple Choice)
5.0/5
(34)

Identify the geometric object that is represented by parametric equations r(t,s)=s+t,3t+1,3s5t\mathbf { r } ( t , s ) = \langle s + t , 3 t + 1,3 s - 5 t \rangle .

(Multiple Choice)
4.8/5
(36)

A paper carrier is traveling 60 miles per hour down a straight road in the direction of the vector i when he throws a paper out the car window with a velocity (relative to the car) in the direction of j and of magnitude 10 miles per hour.(a) Find the velocity of the paper relative to the ground when the paper carrier releases it.(b) Find the speed of the paper at that time.

(Essay)
4.7/5
(38)

Identify the geometric object that is represented by parametric equations r(t,s)=3coss,3sins,t\mathbf { r } ( t , s ) = \langle 3 \cos s , 3 \sin s , t \rangle .

(Multiple Choice)
4.8/5
(36)
Showing 61 - 80 of 111
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)