Exam 10: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let the position function of a particle be r (t) = sin 3t i+cos 3t j+sin 4t k. Find the smallest value of its speed.

(Multiple Choice)
4.8/5
(37)

Let the position function of a particle be r(t)=t2,12t,t\mathbf { r } ( t ) = \left\langle t ^ { 2 } , 1 - 2 t , t \right\rangle . Find the smallest value of its speed.

(Multiple Choice)
4.8/5
(41)

Find the center of the osculating circle of the parabola y=x2y = x ^ { 2 } at the origin.

(Short Answer)
4.9/5
(38)

Identify the geometric object that is represented by parametric equations r(t,s)=3sinscost,3sinssint,3coss\mathbf { r } ( t , s ) = \langle 3 \sin s \cos t , 3 \sin s \sin t , 3 \cos s \rangle .

(Multiple Choice)
4.9/5
(44)

Find the unit tangent vector T(t) to the curve r (t) = ti+t2jt \mathbf { i } + t ^ { 2 } \mathrm { j } when t = 0.

(Multiple Choice)
4.8/5
(41)

Find the unit tangent vector T(t) to the curve r (t) = (sint,2t,t2)\left( \sin t , 2 t , t ^ { 2 } \right) when t = 0.

(Multiple Choice)
4.9/5
(27)

Let the acceleration of a particle be a(t)=ti\mathbf { a } ( t ) = t \mathbf { i } , and let its velocity when t = 0 be v(0)=i+k\mathbf { v } ( 0 ) = \mathbf { i } + \mathbf { k } . Find its speed when t = 2.

(Multiple Choice)
4.9/5
(37)

Consider r (t), the vector function describing the curve shown below. Put the curvatures at A, B, and C in order from smallest to largest. Consider r (t), the vector function describing the curve shown below. Put the curvatures at A, B, and C in order from smallest to largest.

(Short Answer)
4.8/5
(41)

Find the equation of the osculating circle of the ellipse whose equation is given by (acost,a2sint,0) at t=π2\left( \operatorname { acos } t , \frac { a } { 2 } \sin t , 0 \right) \text { at } t = \frac { \pi } { 2 } \text {. }

(Essay)
4.8/5
(45)

For r(t)=t2i+tj\mathbf { r } ( t ) = t ^ { 2 } \mathbf { i } + t \mathbf { j } , find aT\mathbf { a } _ { T } and aN\mathbf { a } _ { N } , the tangential and normal components of acceleration.

(Essay)
4.9/5
(40)

Let x=t3 and y=3t2. Find the point on the curve closest to (0,3)x = t ^ { 3 } \text { and } y = 3 t ^ { 2 } . \text { Find the point on the curve closest to } ( 0,3 ) \text {. }

(Essay)
4.8/5
(29)
Showing 101 - 111 of 111
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)