Exam 19: Flux Integrals and Divergence

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

What is the flux of the vector field F=5i+6j+2k\overrightarrow { \vec { F } } = - 5 \vec { i } + 6 \vec { j } + 2 \vec { k } through a circle in the xy-plane of radius 2 oriented upward with center at the origin?

(Essay)
4.7/5
(30)

Suppose S is a disk of radius 2 in the plane x + z = 0 centered at (0, 0, 0)oriented "upward". Calculate the flux of G=(e2xyzsecy)\vec { G } = \left( e ^ { - 2 x y } z \sec y \right) through S.

(Short Answer)
4.9/5
(36)

Compute the flux of F=xz2i+yz2j+4z5k { \vec { F } } = x z ^ { 2 } \vec { i } + y z ^ { 2 } \vec { j } + 4 z ^ { 5 } \vec { k } through the cylindrical surface x2+y2=16,0z5x ^ { 2 } + y ^ { 2 } = 16,0 \leq z \leq 5 oriented away from the z-axis.

(Essay)
4.9/5
(43)

Let C be the portion of the cylinder x2+y2=R2x ^ { 2 } + y ^ { 2 } = R ^ { 2 } of fixed radius R with π\pi /3 \le θ\theta \le 2 π\pi /3 and -a \le z \le a oriented outward for some positive number a.Let S be the portion of the sphere x2+y2+z2=R2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = R ^ { 2 } with π\pi /3 \leθ\theta\le 2 π\pi /3 and π\pi /3 \le φ\varphi \le 2 π\pi /3 oriented outward.Determine the value of a for which the flux of r\vec { r } through each of these surfaces is equal in magnitude but opposite in sign for any choice of R.

(Short Answer)
4.9/5
(42)

Let S be the sphere of radius 3 centered at the origin, oriented outward. Suppose F\vec{F} is normal to n\vec { n } at every point of S.Find the flux of F\vec{F} out of S.

(Short Answer)
4.8/5
(41)

Suppose the surface S is the part of the surface x = g(y, z), for points (y, z)belonging to a region R in the yz-plane.If S is oriented in the positive x-direction, what will be the formula for computing the flux of F\vec { F} through S?

(Essay)
4.9/5
(35)

Compute the flux of the vector field F=yi+(x+y)j+zk\vec { F } = y \vec { i } + ( x + y ) \vec { j } + z \vec { k } through the surface S that is the part of the surface z=x2y2z = x ^ { 2 } - y ^ { 2 } above the disk x2+y21x ^ { 2 } + y ^ { 2 } \leq 1 , oriented in the positive z-direction.

(Essay)
4.8/5
(38)

Let S be the sphere of radius 6 centered at the origin, oriented outward. Let G\vec { G } be a vector field such that G=3xi+3yj+3zk\vec { G } = 3 x \vec { i } + 3 y \vec { j } + 3 z \vec { k } at every point of S.Find the flux of G\vec { G } out of S.

(Essay)
4.9/5
(47)

Compute the flux of the vector field F=(x3y)i+(4y2z)j+4xk { \vec { F } } = ( x - 3 y ) \vec { i } + ( 4 y - 2 z ) \vec { j } + 4 x \vec { k } through the surface S, where S is the part of the plane z = x + 2y above the rectangle 0x2,0y30 \leq x \leq 2,0 \leq y \leq 3 oriented downward.

(Short Answer)
4.8/5
(42)

If F\vec { F } is a constant vector field and S1 and S2 are oriented rectangles with areas 1 and 2 respectively, then S2FdA=2S1FdA\int _ { S _ { 2 } } \vec { F } \cdot \vec { d A } = 2 \int _ { S _ { 1 } } \vec { F } \cdot \vec { d A } .

(True/False)
4.7/5
(43)

Suppose T is the triangle with vertices (1,0,0),(0,2,0)( 1,0,0 ) , ( 0,2,0 ) and (0,0,2)( 0,0,2 ) oriented upward.Calculate the flux of F=e8x+4y+4zi5j { \vec { F } } = e ^ { 8 x + 4 y + 4 z \vec { i } } - 5 \vec { j } through T exactly, and then give an answer rounded to 3 decimal places.

(Essay)
4.8/5
(45)

(a)Compute the flux of the vector field F=yixj+5(x2+y2+z2)zk\vec { F } = y \vec { i } - x \vec { j } + 5 \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) z \vec { k } through Sa, the sphere of radius a, x2+y2+z2=a2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = a ^ { 2 } , oriented outward. (b)Find lima0S0FdA\lim _ { a \rightarrow 0 } \int _ { S _ { 0 } } \vec { F } \cdot d \vec { A } .

(Essay)
4.9/5
(36)

Find the flux of F=xi+yj+8zk { \vec { F } } = x \vec { i } + y \vec { j } + 8 z \vec { k } over the sphere Sa, x2+y2+z2=a2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = a ^ { 2 } , oriented outward, with a > 0.

(Multiple Choice)
4.8/5
(40)

Calculate C(5xi+3yj)dA\int _ { C } ( 5 x \vec { i } + 3 y \vec { j } ) \cdot \vec { d A } where C is a cylinder of radius R with 0 \le z \le 1.

(Multiple Choice)
4.9/5
(38)

Let F=xi+yj { \vec { F } } = x \vec { i } + y \vec { j } .Write down an iterated integral that computes the flux of F\vec { F } through S, where S is the part of the surface z=x2+y2z = x ^ { 2 } + y ^ { 2 } below the plane z = 16, oriented downward.

(Multiple Choice)
4.7/5
(37)

Suppose that S is the surface which is a portion of the graph of a smooth function z=f(x,y)z = f ( x , y ) over a region R in the xy-plane, oriented upward.Consider the vector field F=fx(x,y)i+fy(x,y)j+g(x,y,z)k\vec { F } = f _ { x } ( x , y ) \vec { i } + f _ { y } ( x , y ) \vec { j } + g ( x , y , z ) \vec { k } . Find g(x,y,z)g ( x , y , z ) so that SFdA=0\int _ { S } { \vec { F } } \cdot d \vec { A } = 0 .

(Essay)
4.8/5
(38)

Let S be the part of the sphere x2+y2+z2=25x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25 with x \ge 0, y \ge 0, z \ge 0, oriented outward.Evaluate S(xzi+4yzj)dA\int _ { S } ( x z \vec { i } + 4 y z \vec { j } ) \cdot \vec { d A } .

(Essay)
4.9/5
(31)

A circular disk, S, of radius 2 and centered on an axis, is perpendicular to the y-axis at y = -6 with normal in the direction of decreasing y. Consider the vector field F=xi+yj+(z+x)k\vec { F } = x \vec { i } + y \vec { j } + ( z + x ) \vec { k } .Is the flux integral SFdA\int_{S} \vec{F} \cdot \overrightarrow{d A} positive, negative or zero?

(Multiple Choice)
4.8/5
(30)

SFdAˉ\int_{S} \vec{F} \cdot d \bar{A} is a vector.

(True/False)
4.8/5
(30)

Let S be the spherical region of radius R with π\pi /3 \le φ\varphi \le 2 π\pi /3 and π\pi /3 \leθ\theta \le 2 π\pi /3.Find the value of R so that SrdA=40π\int _ { S } \vec { r } \cdot \vec { d A } = 40 \pi Give your answer to two decimal places.

(Short Answer)
4.9/5
(34)
Showing 21 - 40 of 52
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)