Exam 19: Flux Integrals and Divergence

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Calculate the flux of F=4i+2j5xk { \vec { F } } = 4 \vec { i } + 2 \vec { j } - 5 x \vec { k } through a disk of radius 5 in the plane x = 3, oriented away from the origin.

(Essay)
4.7/5
(45)

Find the flux of F=(x2+z2)j { \vec { F } } = \left( x ^ { 2 } + z ^ { 2 } \right) \vec { j } through the disk of radius 5 in the xz-plane, centered at the origin, and oriented upward.Give an exact answer.

(Essay)
4.9/5
(35)

Let F\vec { F } be a constant vector field with F=ai+bj+ck { \vec { F } } = a \vec { i } + b \vec { j } + c \vec { k } , where a, b, c are constants satisfying the condition a2+b2+c2=1a ^ { 2 } + b ^ { 2 } + c ^ { 2 } = 1 .Let S be a surface lying on the plane x + 4y - 5z = 10 oriented upward. If the surface area of S is 10, what is the smallest possible value of SFdA\int _ { S } \vec { F } \cdot \vec { d A } , and what are the corresponding values of a, b, c?

(Essay)
4.8/5
(42)

Let S be an oriented surface with surface area 6.Suppose F=ai+bj+ck\vec{F}=a \vec{i}+b \vec{j}+c \vec{k} is a constant vector field with magnitude 3.If the angle between F\vec{F} and n\vec { n } is π\pi /6 at each point of the surface S, determine the value of the flux integral SFdA\int_{S} \vec{F} \cdot \overrightarrow{d A} .

(Essay)
4.7/5
(39)

Calculate the flux of F=(x2+z2)yi\vec { F} = \left( x ^ { 2 } + z ^ { 2 } \right) y \vec { i } , through the plane rectangle z = 3, 0 \le x \le 2, 0 \le y \le 5, oriented in the positive z-direction.

(Short Answer)
4.8/5
(37)

Let S be the cylinder x2+y2=4,0z6x ^ { 2 } + y ^ { 2 } = 4,0 \leq z \leq 6 .Find Q if (xx2+y2i+yx2+y2j+k)dA=Qπ\int \left( \frac { x } { \sqrt { x ^ { 2 } + y ^ { 2 } } } \vec { i } + \frac { y } { \sqrt { x ^ { 2 } + y ^ { 2 } } } \vec { j } + \vec { k } \right) \cdot d \vec { A } = Q \pi .

(Short Answer)
4.7/5
(30)

Let n\vec { n } be the unit normal vector of S.If the angle between F\vec{F} and n\vec { n } is less than π\pi /2 at each point of the surface, then SFdA0\int _ { S } \vec { F } \cdot \overrightarrow { d A } \geq 0

(True/False)
4.9/5
(35)

Suppose S is a disk of radius 2 in the plane x + z = 0 centered at (0, 0, 0)oriented "upward".Write down an area vector for the surface S.

(Essay)
4.8/5
(34)

Let G\vec { G } be the constant vector field ai+bj+cka \vec { i } + b \vec { j } + c \vec { k } . Find a condition on a, b and c such that SFdA=0\int_{S} \vec{F} \cdot \overrightarrow{d A}=0 for any surface S lying on the plane -5x + 3y - 2z = 1.

(Essay)
4.8/5
(33)

Compute the flux of the vector field F=(x4y)i+(4y2z)j+6xk\vec { F } = ( x - 4 y ) \vec { i } + ( 4 y - 2 z ) \vec { j } + 6 x \vec { k } through the surface S, where S is the part of the plane z = x + 2y above the rectangle 0x2,0y30 \leq x \leq 2,0 \leq y \leq 3 oriented upward. What is the answer if the plane is oriented downward?

(Short Answer)
4.8/5
(36)

Let F=αxi+byj+czk\vec{F}=\alpha x \vec{i}+b y \vec{j}+c z \vec{k} where a, b and c are constants.Suppose that the flux of F\vec { F } through a surface of area 3 lying in the plane y = 3, oriented in the positive y-direction, is 45.Find the flux of F\vec { F} through a surface of area 4 lying in the plane y = 3, oriented in the negative y-direction.

(Short Answer)
4.8/5
(28)

Let F=xzi+yzj+9x2y2k\vec { F } = x z \vec { i } + y z \vec { j } + 9 x ^ { 2 } y ^ { 2 } \vec { k } .Calculate the flux of F\vec { F } through the surface oriented upward and given by z = f(x, y)= xy, over the region in the xy-plane bounded by the curves y=x2y = x ^ { 2 } and y=x3y = x ^ { 3 } between the origin and the point (1, 1).

(Essay)
4.9/5
(33)
Showing 41 - 52 of 52
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)