Exam 18: Line Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let F\vec{F} be the vector field shown below.  Let  \vec{F}  be the vector field shown below.   Let C be the rectangular loop from (0, 0)to (1, 0)to (1, 1)to (0, 1), then back to (0, 0). Do you expect the line integral  \int_{C} \vec{F} \cdot d \vec{r}  to be positive, negative or zero? Let C be the rectangular loop from (0, 0)to (1, 0)to (1, 1)to (0, 1), then back to (0, 0). Do you expect the line integral CFdr\int_{C} \vec{F} \cdot d \vec{r} to be positive, negative or zero?

(Multiple Choice)
4.8/5
(38)

Let F=81yi+9xj\vec{F}=81 y \vec{i}+9 x \vec{j} and let Ca be the circle of radius a centered at the origin, traveled in a counter-clockwise direction. Find lima0C0Fdr\lim _ { a \rightarrow 0 } \int _ { C _ { 0 } } \vec { F } \cdot d \vec { r }

(Short Answer)
4.7/5
(31)

Find a vector field F\vec{F} with the property that the line integral of F\vec{F} along the line from (0, 0)to (a, b)is 3ab2+5ab3 a b ^ { 2 } + 5 a b for any numbers a and b.

(Essay)
4.9/5
(33)

Use Green's Theorem to find the line integral of F=(x4y)iˉ+x2j\vec{F}=(-x-4 y) \bar{i}+x^{2} \vec{j} around the closed curve composed of the graph of y = x2n where n is a positive integer and the line y = 1.

(Essay)
4.8/5
(36)

Find the line integral of F=(3x2y)i+(3x+5y)j\vec{F}=(3 x-2 y) \vec{i}+(3 x+5 y) \vec{j} around the curve consisting of the graph of y = xn from the origin to the point (1, 1), followed by straight lines from (1, 1)to (0, 1)and from (0, 1)back to the origin.

(Essay)
4.8/5
(43)

Let F=(2+4xe2(x2+y2))i+(4ye2x2+y2))j\vec { F } = \left( 2 + 4 x e ^ { 2 \left( x ^ { 2 } + y ^ { 2 } \right) } \right) \vec { i } + \left( 4 y e ^ { \left. 2 x ^ { 2 } + y ^ { 2 } \right) } \right) \vec { j } Find the value of CFdr\int _ { C } \vec { F } \cdot d \vec { r } where C is a path joining (0, 0)to the point (1, 2).

(Short Answer)
4.9/5
(42)

The following table gives values of a function f(x, y).The table reflects the properties of the function, which is differentiable and defined for all (x, y). x y 1 2 3 4 5 6 7 8 9 10 1 7 8 4 3 8 2 1 1 5 9 2 5 9 7 11 7 3 1 4 2 10 3 6 8 14 11 10 5 13 13 12 14 4 11 15 20 22 25 24 21 21 15 12 5 17 25 30 31 32 35 37 40 35 32 6 25 30 34 30 29 26 15 14 12 9 7 39 42 51 55 50 49 47 45 35 36 8 26 21 19 24 28 27 30 33 45 39 9 49 50 55 62 69 71 60 54 49 47 10 65 70 64 6 63 49 42 41 40 38 Let F=f\vec{F}=\nabla f and H=7Fˉ.\overline{\mathrm{H}}=7 \overline{\bar{F}} . Find CHˉdr\int_{C} \bar{H} \cdot \overline{d r} if C is the circle of radius 2 centered at (4, 3).

(Short Answer)
4.7/5
(33)

On an exam, students were asked to evaluate C(yi+xjx2+y2)dr\int _ { C } \left( \frac { - y \vec { i } + x \vec { j } } { x ^ { 2 } + y ^ { 2 } } \right) \cdot d \vec { r } , where C is the circle centered at the origin of radius r: x=rcost,y=rsint,0t2πx = r \cos t , y = r \sin t , 0 \leq t \leq 2 \pi .One student wrote: "Since y(yx2+y2)=y2x2x2+y2,x(xx2+y2)=y2x2x2+y2\frac { \partial } { \partial y } \left( \frac { - y } { x ^ { 2 } + y ^ { 2 } } \right) = \frac { y ^ { 2 } - x ^ { 2 } } { x ^ { 2 } + y ^ { 2 } } , \frac { \partial } { \partial x } \left( \frac { x } { x ^ { 2 } + y ^ { 2 } } \right) = \frac { y ^ { 2 } - x ^ { 2 } } { x ^ { 2 } + y ^ { 2 } } Using Green's Theorem, C(yi+xjx2+y2)dr=D0dA=0\int _ { C } \left( \frac { - y \vec { i } + x \vec { j } } { x ^ { 2 } + y ^ { 2 } } \right) \cdot d \vec { r } = \int _ { D } 0 d A = 0 ." Do you agree with the student?

(Essay)
4.7/5
(35)

Let C be the circular path which is the portion of the circle of radius 1 centered at the origin starting at (1, 0)and ending at (0,-1), oriented counterclockwise. Let G=x6y3i+(x3y6+6x)j\vec { G } = x ^ { 6 } y ^ { 3 } \vec { i } + \left( x ^ { 3 } y ^ { 6 } + 6 x \right) \vec { j } Determine the exact value of CGdr\int _ { C } \vec { G } \cdot d \vec { r }

(Essay)
4.8/5
(34)

Calculate CFdr\int_{C} \vec{F} \cdot d \vec{r} when F=(y+5z)i+(x+4z)j+4k\overrightarrow { \vec { F } } = ( y + 5 z ) \vec { i } + ( x + 4 z ) \vec { j } + 4 \vec { k } and C is the line from the origin to the point (4, 4, 4).

(Short Answer)
4.9/5
(33)

Let C be the unit circle x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 oriented in a counter-clockwise direction.Say whether the following statements are true or false. If cHdr=0\int_{c} \vec{H} \cdot d \vec{r}=0 , we can conclude that F\vec { F } is path-independent field.

(True/False)
5.0/5
(40)

Calculate the line integral of F=(9y+x)i+2xj\vec{F}=(-9 y+x) \vec{i}+2 x \vec{j} along a quarter of a circle centered at the origin, starting at (3, 0)and ending at (0, -3).

(Essay)
4.8/5
(36)

Let F=100i+10j\vec{F}=100 \vec{i}+10 \vec{j} and let Ca be the circle of radius a centered at the origin, traveled in a counter-clockwise direction. Find c0Fdr\int _ { c _ { 0 } } \vec { F } \cdot d \vec { r }

(Essay)
4.8/5
(29)

If F=3x2i+4zsin(4yz)j+4ysin(4yz)k\vec { F } = 3 x ^ { 2 } \vec { i } + 4 z \sin ( 4 y z ) \vec { j } + 4 y \sin ( 4 y z ) \vec { k } , compute CFdr\int_{C} \vec{F} \cdot d \vec{r} where C is the curve from A(0, 0, 3)to B(2, 1, 5)shown below. Hint: messy computation can be avoided.  If  \vec { F } = 3 x ^ { 2 } \vec { i } + 4 z \sin ( 4 y z ) \vec { j } + 4 y \sin ( 4 y z ) \vec { k }  , compute  \int_{C} \vec{F} \cdot d \vec{r}  where C is the curve from A(0, 0, 3)to B(2, 1, 5)shown below. Hint: messy computation can be avoided.

(Short Answer)
4.9/5
(35)

Suppose that C1Fdr=4,C2Fdr=3,C3Fdr=16\int _ { C _ { 1 } } \vec { F } \cdot \overline { d r } = 4 , \int _ { C _ { 2 } } \vec { F } \cdot \overline { d r } = 3 , \int _ { C _ { 3 } } \vec { F } \cdot \overline { d r } = 16 and C4Fdr=1\int _ { C _ { 4 } } \vec { F } \cdot \overline { d r } = - 1 where C1 is the line joining (0, 0)to (1, 0), C2 is the line joining (0, 0)to (3, 0), C3 is the line joining (0, 0)to (0, 1)and C4 is the line joining (0, 1)to (0, 2). Determine, if possible, the value of the line integral of F\vec{F} along the line from (0, 1)to (1, 0).If the value cannot be determined, say so.

(Short Answer)
4.9/5
(36)

Let Ca be the circle x2 + y2 = a2 oriented counter-clockwise. Use Green's theorem to find c0((x3x2y)i+(xy2+y3)j)dr\int _ { c _ { 0 } } \left( \left( x ^ { 3 } - x ^ { 2 } y \right) \vec { i } + \left( x y ^ { 2 } + y ^ { 3 } \right) \vec { j } \right) \cdot \overrightarrow { d r }

(Essay)
4.8/5
(33)

Let C be the unit circle x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 oriented in a counter-clockwise direction.Say whether the following statements are true or false.If cFdr0\int_{c} \vec{F} \cdot d \vec{r} \neq 0 , we can conclude that F\vec { F } is not path-independent field.

(True/False)
4.8/5
(37)

Let F1(x,y)=y510xy+cosyF _ { 1 } ( x , y ) = y ^ { 5 } - 10 x y + \cos y Find a function F2(x,y)F_{2}(x, y) , such that F=F1i+F2j\vec{F}=F_{1} \vec{i}+F_{2} \vec{j} is a gradient field.

(Essay)
4.8/5
(37)

Suppose that F(0,1)=4i+j\vec{F}(0,1)=4 \vec{i}+\vec{j} F(0.5,1)=4j\vec{F}(0.5,1)=4 \vec{j} F(1,1)=4i+9j\vec { F } ( 1 , - 1 ) = 4 \vec { i } + 9 \vec { j } and F(1,0)=4j\vec{F}(1,0)=4 \vec{j} . Estimate the work done by F\vec{F} along the line from (1, 0)to (1, 1).

(Short Answer)
4.8/5
(39)

Use Green's Theorem to calculate the circulation of F=5y3i+4x3yj\vec{F}=-5 y^{3} \vec{i}+4 x^{3} y \vec{j} around the triangle with vertices (0, 0), (1, 0)and (0, 1), oriented counter-clockwise.

(Essay)
4.9/5
(35)
Showing 21 - 40 of 78
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)