Exam 18: Line Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let F=(y2+ysin(xy))i+(4xyy+xsin(xy))j\vec{F}=\left(y^{2}+y \sin (x y)\right) \vec{i}+(4 x y-y+x \sin (x y)) \vec{j} Is F\vec{F} path-independent?

(Short Answer)
4.9/5
(31)

Find the work done by the force field F=(12y+ex6sinx)i+3x2yj\overrightarrow { \vec { F } } = \left( 12 y + e ^ { x } - 6 \sin x \right) \vec { i } + 3 x ^ { 2 } y \vec { j } along the parabola y = 2x2 from (0, 0)to (1, 2).

(Short Answer)
4.8/5
(30)

Let F=(3x+2y)i+(3x3y)j\vec{F}=(3 x+2 y) \vec{i}+(3 x-3 y) \vec{j} Evaluate CFdr\int_{C} \vec{F} \cdot d \vec{r} , where C is the line from (0, 0)to (2, 2).

(Short Answer)
4.8/5
(37)

On an exam, students were asked to evaluate C(x2i+xj)dr\int _ { C } \left( x ^ { 2 } \vec { i } + x \vec { j } \right) \cdot d \vec { r } , where C has the parameterization x=cost,y=sint,0tπx = \cos t , y = \sin t , 0 \leq t \leq \pi .One student wrote: "Using Green's Theorem, C(x2i+xj)dr=D(xx(x2)y)dA=D1dA=\int _ { C } \left( x ^ { 2 } \vec { i } + x \vec { j } \right) \cdot d \vec { r } = \int _ { D } \left( \frac { \partial x } { \partial x } - \frac { \partial \left( x ^ { 2 } \right) } { \partial y } \right) d A = \int _ { D } 1 d A = Area of the semi-circle = π2\frac { \pi } { 2 } ." Do you agree with the student?

(Essay)
4.8/5
(37)

If C1 and C2 are two curves with the same starting and ending points, then c1Fdr=c2Fdr\int _ { c _ { 1 } } \vec { F } \cdot \overline { d r } = \int _ { c _ { 2 } } \vec { F } \cdot \overline { d r } , for any vector field F\vec{F}

(True/False)
4.8/5
(36)

Let F=x2+y2i+x2+y2j\vec { F } = \sqrt { x ^ { 2 } + y ^ { 2 } } \vec { i } + \sqrt { x ^ { 2 } + y ^ { 2 } } \vec { j } Is the line integral of F\vec{F} around the unit circle traversed counterclockwise: positive, negative, or zero?

(Multiple Choice)
4.9/5
(49)

Let F=(4x+5y)i+(4x4y)j\vec { F } = ( 4 x + 5 y ) \vec { i } + ( 4 x - 4 y ) \vec { j } Let I1=C1FˉdrI _ { 1 } = \int _ { C _ { 1 } } \bar { F } \cdot \overline { d r } , where C1 is the line from (0, 0)to (2, 2). Let I2=c2FdrI_{2}=\int_{c_{2}} \vec{F} \cdot \overrightarrow{d r} , where C2 is parameterized by r(t)=ti+12t2j,0t2\vec { r } ( t ) = t \vec { i } + \frac { 1 } { 2 } t ^ { 2 } \vec { j } , \quad 0 \leq t \leq 2 Notice that both C1 and C2 go from (0, 0)to (2, 2), but is I1=I2?I _ { 1 } = I _ { 2 } ? Explain.

(Essay)
4.9/5
(36)

Let F=xj\vec { F } = x \vec { j } Let C1 be the line from (0, 0)to (2, 0), C2 the line from (2, 0)to (2,-1), C3 the line from (2,-1)to (0,-1), and C4 the line from (0,-1)to (0, 0). (A)Using the definition of line integral only, without parameterizing the curves, show that the line integral of F\vec{F} along C = C1 + C2 + C3 + C4 is -2.That is, show CFdr=2\int_{C} \vec{F} \cdot \overline{d r}=-2 (B)The rectangle, R, enclosed by the lines C1, C2, C3 and C4 is of area 2.So, by Green's Theorem CFdr=R(xx0)dA= Area of R=2\int _ { C } \vec { F } \cdot \overline { d r } = \int _ { R } \left( \frac { \partial x } { \partial x } - 0 \right) d A = \text { Area of } R = 2 Is something wrong?

(Essay)
4.8/5
(32)

Suppose that cFdr=6\int_{c} \vec{F} \cdot d \vec{r}=6 , where C is the circle of radius 1, centered at the origin, starting at (1, 0)and traveling counter-clockwise back to (1, 0). G12Fdr=12\int _ { G _ { 1 } } 2 \vec { F } \cdot d \vec { r } = 12

(True/False)
4.9/5
(47)

Let F(x,y)=(9x23y2)i6xyj\vec { F } ( x , y ) = \left( 9 x ^ { 2 } - 3 y ^ { 2 } \right) \vec { i } - 6 x y \vec { j } Evaluate the line integral CFdr\int _ { C } \vec { F } \cdot d \vec { r } where C the path from (0, 0)to (1, 1)that goes along the x-axis to (1, 0), and then vertically up to (1, 1).

(Short Answer)
5.0/5
(46)

Let C be the curve x = 2t + cos t, y = 4t, z = 2 sin t for 0 \le t \le 3 π\pi /2. Use a potential function to evaluate CFdr\int_{C} \vec{F} \cdot d \vec{r} exactly, where F=4x3cos(4yz)i4x4zsin(4yz)j4x4ysin(4yz)k\overrightarrow { \vec { F } } = 4 x ^ { 3 } \cos ( 4 y z ) \vec { i } - 4 x ^ { 4 } z \sin ( 4 y z ) \vec { j } - 4 x ^ { 4 } y \sin ( 4 y z ) \vec { k } \text {. }

(Essay)
4.8/5
(34)

Let F=x2+y2i+x2+y2j\vec { F } = \sqrt { x ^ { 2 } + y ^ { 2 } } \vec { i } + \sqrt { x ^ { 2 } + y ^ { 2 } } \vec { j } For a fixed θ\theta , let C θ\theta be the line segment from (0, 0)to the point (cos θ\theta , sin θ\theta )on the unit circle. Find a parameterization of C θ\theta and compute C0Fdr\int_{C_{0}} \vec{F} \cdot d \vec{r} .(Your answer will depend on θ\theta .)

(Essay)
5.0/5
(29)

Let F=y4x2+4xy+y2ix4x2+4xy+y2j\vec { F } = \frac { y } { 4 x ^ { 2 } + 4 x y + y ^ { 2 } } \vec { i } - \frac { x } { 4 x ^ { 2 } + 4 x y + y ^ { 2 } } \vec { j } Check that F1y=F2x\frac { \partial F _ { 1 } } { \partial y } = \frac { \partial F _ { 2 } } { \partial x } .Is F\vec{F} is path-independent?

(Essay)
4.9/5
(34)

Answer true or false, giving a reason for your answer.Let ϕ(x,y)=ln(xy)\phi ( x , y ) = \ln ( | x y | ) so that ϕ=1xi+1yj\nabla \phi = \frac { 1 } { x } \vec { i } + \frac { 1 } { y } \vec { j } . Then Cϕdr=ϕ(1,1)ϕ(1,1)\int _ { C } \nabla \phi \cdot d \vec { r } = \phi ( 1,1 ) - \phi ( - 1,1 ) where C is given by the parametrization x=t,y=1x = t , y = 1 for 1t1- 1 \leq t \leq 1 .

(Essay)
4.8/5
(37)

Explain what is meant by saying a vector field is conservative.

(Multiple Choice)
4.8/5
(32)

Let C be a segment 9 units long of the contour f(x, y)= 5.What is the work done by the gradient field of f along C?

(Short Answer)
4.8/5
(31)

Consider the vector field F=(Ax+By)i+(Bx+Cy)j\vec { F } = ( A x + B y ) \vec { i } + ( B x + C y ) \vec { j } for certain constants A, B and C. Show that F\vec{F} is path-independent by finding its potential function.

(Essay)
4.9/5
(35)

Let F=(3x+15y)i+(3x3y)j\overrightarrow { \vec { F } } = ( 3 x + 15 y ) \vec { i } + ( 3 x - 3 y ) \vec { j } Evaluate CFdr\int_{C} \vec{F} \cdot d \vec{r} , where C is parameterized by r(t)=ti+12t2j,0t2\vec { r } ( t ) = t \vec { i } + \frac { 1 } { 2 } t ^ { 2 } \vec { j } , \quad 0 \leq t \leq 2

(Short Answer)
4.9/5
(38)

Given that G=3x2i+10y4j\vec{G}=3 x^{2} \vec{i}+10 y^{4} \vec{j} find a function g so that G=gradg.\vec{G}=\operatorname{grad} g . Use the function g to compute CGdr\int _ { C } \vec { G } \cdot d \vec { r } where C is a curve beginning at the point (2, 4)and ending at the point (0, 1).

(Short Answer)
4.8/5
(29)

Let C1 be the rectangular loop consisting of four line segments: from (0, 0)to (1, 0), then to (1, 2), then to (0, 2), then back to (0, 0).Suppose C2 is the triangular loop joining (0, 0)to (1, 0), then to (1, 2)then back to (0, 0), and C3 is another triangular loop joining (0, 0)to (1, 2), then to (0, 2)and then back to (0, 0). Is it true that c2Fdr=C3Fdr+C1Fdr\int _ { c _ { 2 } } \vec { F } \cdot \overline { d r } = \int _ { C _ { 3 } } \vec { F } \cdot \overline { d r } + \int _ { C _ { 1 } } \vec { F } \cdot \overline { d r } for any vector field F\vec{F} defined on the xy-plane?

(Multiple Choice)
4.7/5
(44)
Showing 41 - 60 of 78
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)