Exam 18: Line Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

If F(x,y)=P(x,y)i+Q(x,y)j\vec { F } ( x , y ) = P ( x , y ) \vec { i } + Q ( x , y ) \vec { j } is a gradient vector field, then Px=Qy\frac { \partial P } { \partial x } = \frac { \partial Q } { \partial y } .

(True/False)
4.8/5
(44)

Use Green's Theorem to evaluate c((cosx2+ex2+3y)i+(e2siny+4x+cosy4)k)dr\int _ { c } \left( \left( \cos x ^ { 2 } + e ^ { x ^ { 2 } } + 3 y \right) \vec { i } + \left( e ^ { 2 \sin y } + 4 x + \cos y ^ { 4 } \right) \vec { k } \right) \cdot \overrightarrow { d r } where C is the circle of radius 3,\sqrt { 3 } , centered at (1,e10,ln13)\left( - 1 , e ^ { 10 } , \ln 13 \right) oriented in a counter-clockwise direction.

(Essay)
4.7/5
(36)

Given the graph of the vector field, F\vec{F} , shown below, list the following quantities in increasing order: C1Fˉdr,C2Fˉdr,C3Fˉdr.\int _ { C _ { 1 } } \bar { F } \cdot d \vec { r } , \quad \int _ { C _ { 2 } } \bar { F } \cdot d \vec { r } , \quad \int _ { C _ { 3 } } \bar { F } \cdot d \vec { r } .  Given the graph of the vector field,  \vec{F}  , shown below, list the following quantities in increasing order:  \int _ { C _ { 1 } } \bar { F } \cdot d \vec { r } , \quad \int _ { C _ { 2 } } \bar { F } \cdot d \vec { r } , \quad \int _ { C _ { 3 } } \bar { F } \cdot d \vec { r } .

(Essay)
4.8/5
(33)

Evaluate cxi+(y+10x)j+(z+9x)kdr\int _ { - c } x \vec { i } + ( y + 10 x ) \vec { j } + ( z + 9 x ) \vec { k } \cdot \overrightarrow { d r } , where C is the curve r(t)=ti+(1t)j+(t2+3)k\vec { r } ( t ) = t \vec { i } + ( 1 - t ) \vec { j } + \left( t ^ { 2 } + 3 \right) \vec { k } for 0 \le t \le 1. Note that the line integral is around -C, not C.

(Short Answer)
4.9/5
(46)

Explain in words and symbols how to calculate the line integral CFdr\int_{C} \vec{F} \cdot d \vec{r} given a parameterization, r=p(t)\vec { r } = \vec { p } ( t ) of the curve C.

(Essay)
4.8/5
(40)

Let F\vec{F} and G\vec { G } be two 2-dimensional fields, where F=3xi+5yj\vec{F}=3 x \vec{i}+5 y \vec{j} and G=3yi+5xj\vec { G } = 3 y \vec { i } + 5 x \vec { j } Let C1 be the circle with center (2, 2)and radius 1 oriented counterclockwise. Let C2 be the path consisting of the straight line segments from (0, 4)to (0, 1)and from (0, 1)to (3, 1). Find the line integral c2Fdr\int_{c_{2}} \vec{F} \cdot d \vec{r} Use "pi" to represent π\pi if necessary.

(Short Answer)
4.8/5
(39)

If the length of curve C1 is longer than the length of curve C2, then C1FdrC2Fdr\int _ { C _ { 1 } } \vec { F } \cdot \overrightarrow { d r } \geq \int _ { C _ { 2 } } \vec { F } \cdot \overrightarrow { d r }

(True/False)
4.8/5
(38)

Let f(x, y, z)be a function of three variables.Suppose that C is an oriented curve lying on the level surface f(x, y, z)= 2. Find the line integral Cgradfdr\int _ { C } \operatorname { grad } f \cdot \overline { d r }

(Short Answer)
4.9/5
(35)

If F\vec{F} is a path-independent field, then CFdr=0\int _ { C } \vec { F } \cdot d \vec { r } = 0 where C has the parameterization r(t)=costi+sintj,0<t<3π\vec { r } ( t ) = \cos t \vec { i } + \sin t \vec { j } , 0 < t < 3 \pi

(True/False)
4.7/5
(32)

Let F\vec{F} be the constant vector field 2i2j+k2 \vec { i } - 2 \vec { j } + \vec { k } Calculate the line integral of F\vec{F} along a line segment L of length 9 at an angle π\pi /3 to F\vec{F}

(Short Answer)
4.8/5
(32)

Consider the vector field F=5xj\vec{F}=5 x \vec{j} . Without using parametrization, calculate directly the line integral of F\vec{F} along the line from (3, 3)to (7, 3).

(Short Answer)
4.7/5
(39)

Which of the two vector fields shown below is not conservative? Which of the two vector fields shown below is not conservative?

(Essay)
4.7/5
(38)

Suppose a curve C is parameterized by r(t)\vec { r } ( t ) with atba \leq t \leq b and suppose F\vec { F } is a vector field F(t)=r(t)×r(t)\vec{F}(t)=\vec{r}(t) \times \vec{r}^{\prime}(t) for atba \leq t \leq b .Explain why CFdr=0\int _ { C } \vec { F } \cdot d \vec { r } = 0

(Essay)
4.8/5
(32)

Is the following vector field is a gradient vector field? F=yi+xj\vec{F}=y \vec{i}+x \vec{j}

(Multiple Choice)
4.9/5
(31)

If CFˉdr=0\int _ { C } \bar { F } \cdot \overline { d r } = 0 , then F\vec{F} is perpendicular to the curve C at every point.

(True/False)
4.8/5
(34)

Let F\vec{F} be a vector field with constant magnitude F=8\| \vec { F } \| = 8 Suppose that r(t),\vec { r } ( t ) , 0 \le t \le 5, is a parameterization of a flow line C of F\vec{F} . Find CFdr\int _ { C } \vec { F } \cdot d \vec { r }

(Short Answer)
5.0/5
(42)

State the Fundamental Theorem of Calculus for Line Integrals.

(Multiple Choice)
4.9/5
(44)

Let F=(2+6xe3(x2+y2))i+(6ye3(x2+y2))j\vec{F}=\left(2+6 x e^{3\left(x^{2}+y^{2}\right)}\right) \vec{i}+\left(6 y e^{3\left(x^{2}+y^{2}\right)}\right) \vec{j} Use the curl test to check whether F\vec{F} is path-independent.

(Multiple Choice)
4.8/5
(42)
Showing 61 - 78 of 78
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)