Exam 10: Conics and Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the arc length of the curve on the given interval. x=t2,y=8t,0t4x = t ^ { 2 } , y = 8 t , 0 \leq t \leq 4

(Multiple Choice)
4.7/5
(38)

Find the center of the ellipse given by 16x2+y2=1616 x ^ { 2 } + y ^ { 2 } = 16

(Multiple Choice)
4.7/5
(38)

Find the distance from the pole to the directrix for the conic r=4214+cosθr = \frac { 42 } { 14 + \cos \theta }

(Multiple Choice)
4.9/5
(34)

Sketch the curve represented by the parametric equations x=et,y=e3t+2x = e ^ { t } , y = e ^ { 3 t } + 2

(Multiple Choice)
4.8/5
(23)

Find the area of the interior of r=10+2sinθr = 10 + 2 \sin \theta

(Multiple Choice)
4.8/5
(37)

Find the area of inside r=88cosθ and outside r=44 by sketching the graph of the r = 88 \cos \theta \text { and outside } r = 44 \text { by sketching the graph of the } equations using the graphing utility.

(Multiple Choice)
4.8/5
(30)

 Find dydx and d2ydx2 if possible, and find the slope and concavity (if possible) at the \text { Find } \frac { d y } { d x } \text { and } \frac { d ^ { 2 } y } { d x ^ { 2 } } \text { if possible, and find the slope and concavity (if possible) at the } point corresponding to θ=π4\theta = \frac { \pi } { 4 } . x=4\theta y=4\theta

(Multiple Choice)
4.9/5
(32)

Sketch the curve represented by the parametric equations x=t,y=t5x = \sqrt { t } , y = t - 5

(Multiple Choice)
5.0/5
(32)

Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. 4x2+4y2+3x+7y6=04 x ^ { 2 } + 4 y ^ { 2 } + 3 x + 7 y - 6 = 0

(Multiple Choice)
4.8/5
(35)

 Find the second derivative d2ydx2 of the parametric equations x=4cosθ,y=4sinθ\text { Find the second derivative } \frac { d ^ { 2 } y } { d x ^ { 2 } } \text { of the parametric equations } x = 4 \cos \theta , y = 4 \sin \theta \text {. }

(Multiple Choice)
4.7/5
(34)

Find the area of the surface generated by revolving the curve about the given axis. x=t,y=6t,0t9x = t , y = 6 t , 0 \leq t \leq 9 (i) xx -axis; (ii) yy -axis

(Multiple Choice)
4.9/5
(39)

Find the center, foci, and vertices of the hyperbola. (x1)216(y+2)21=1\frac { ( x - 1 ) ^ { 2 } } { 16 } - \frac { ( y + 2 ) ^ { 2 } } { 1 } = 1

(Multiple Choice)
4.9/5
(36)

Find the vertex of the parabola given by y2=8xy ^ { 2 } = - 8 x

(Multiple Choice)
4.8/5
(29)

Find the length of the curve r=2secθ over the interval 0θπ3. Round your r = 2 \sec \theta \text { over the interval } 0 \leq \theta \leq \frac { \pi } { 3 } \text {. Round your } answer to two decimal places.

(Multiple Choice)
4.8/5
(46)

Find the distance from the pole to the directrix for the conic r=3015+31sinθr = - \frac { 30 } { 15 + 31 \sin \theta }

(Multiple Choice)
4.9/5
(38)

Find the vertex, focus, and directrix of the parabola and sketch its graph. y2+6y+4x+1=0y ^ { 2 } + 6 y + 4 x + 1 = 0

(Multiple Choice)
4.8/5
(31)

Find all points of intersection of the graphs of the equations. r=1+\theta r=3\theta

(Multiple Choice)
4.9/5
(31)

Find the area of the surface generated by revolving the curve about the given axis. x=t,y=6t,0t9x = t , y = 6 t , 0 \leq t \leq 9 (i) xx -axis;(ii) yy -axis

(Multiple Choice)
4.8/5
(33)

 Find dydx\text { Find } \frac { d y } { d x } \text {. } x=t12x = \sqrt [ 12 ] { t } y=6ty = 6 - t

(Multiple Choice)
4.8/5
(33)

Find the arc length of the curve on the given interval. x=t,y=3t2,0t3x = \sqrt { t } , y = 3 t - 2,0 \leq t \leq 3

(Multiple Choice)
4.9/5
(41)
Showing 61 - 80 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)