Exam 10: Conics and Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Write the corresponding rectangular equation for the curve represented by the parametric equation x=9t2,y=4t+3x = 9 t - 2 , y = 4 t + 3 by eliminating the parameter.

(Multiple Choice)
4.7/5
(35)

Match the equation with its graph. (x3)24y29=1\frac { ( x - 3 ) ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 9 } = 1

(Multiple Choice)
5.0/5
(42)

Find the length of the curve over the given interval. r=24cosθ,π2θπ2r = 24 \cos \theta , - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }

(Multiple Choice)
4.7/5
(45)

Pluto moves in an elliptical orbit with the sun at one of the foci. The length of half of the major axis is 5.906×1095.906 \times 10 ^ { 9 } kilometers, and the eccentricity is 0.24880.2488 . Find the perihelion distance of Pluto from the sun. Round your answer to the nearest kilometers.

(Multiple Choice)
4.9/5
(31)

Find the length of the curve over the given interval. r=2(1+cosθ),0θ2πr = 2 ( 1 + \cos \theta ) , 0 \leq \theta \leq 2 \pi

(Multiple Choice)
4.8/5
(33)

Find a set of parametric equations for the rectangular equation y=2x3 that y = 2 x - 3 \text { that } satisfies the condition t=0t = 0 at the point (2,1)( 2,1 ) .

(Multiple Choice)
4.9/5
(31)

 Find dydx and d2ydx2 if possible, and find the slope and concavity (if possible) at the \text { Find } \frac { d y } { d x } \text { and } \frac { d ^ { 2 } y } { d x ^ { 2 } } \text { if possible, and find the slope and concavity (if possible) at the } point corresponding to θ=π4\theta = \frac { \pi } { 4 } . x=4\theta y=4\theta

(Multiple Choice)
4.9/5
(29)

 Find the area of the surface formed by revolving about the θ=π2 axis the following \text { Find the area of the surface formed by revolving about the } \theta = \frac { \pi } { 2 } \text { axis the following } curve over the given interval. r=e8θ,0θπ2r = e ^ { 8 \theta } , 0 \leq \theta \leq \frac { \pi } { 2 }

(Multiple Choice)
4.9/5
(36)

Identify any points at which the Folium of Descartes x=8t1+t3,y=8t21+t3 is not x = \frac { 8 t } { 1 + t ^ { 3 } } , y = \frac { 8 t ^ { 2 } } { 1 + t ^ { 3 } } \text { is not } smooth. Round your answer to two decimal places, if necessary.

(Multiple Choice)
4.8/5
(33)

Identify the choice that best completes the statement or answers the question.  Find dydx\text { Find } \frac { d y } { d x } \text {. } x=t2x = t ^ { 2 } y=1010ty = 10 - 10 t

(Multiple Choice)
4.9/5
(25)

 Find dydx and d2ydt2 if possible, and find the slope and concavity (if possible) at the \text { Find } \frac { d y } { d x } \text { and } \frac { d ^ { 2 } y } { d t ^ { 2 } } \text { if possible, and find the slope and concavity (if possible) at the } point corresponding to t = 5. x=t+10 y=+4t

(Multiple Choice)
4.8/5
(37)

 Find the second derivative d2ydx2 of the parametric equations x=4t,y=8t3\text { Find the second derivative } \frac { d ^ { 2 } y } { d x ^ { 2 } } \text { of the parametric equations } x = 4 t , y = 8 t - 3 \text {. } Round your answer to two decimal places, if necessary.

(Multiple Choice)
4.9/5
(35)

Write the corresponding rectangular equation for the curve represented by the parametric equations \)x = 7 + \frac { 2 } { t } , y = t - 9 \text { by eliminating the parameter. }\)

(Multiple Choice)
4.7/5
(27)

Find a polar equation for the ellipse with its focus at the pole and vertices (6,0),(24,π)( 6,0 ) , ( 24 , \pi )

(Multiple Choice)
4.9/5
(31)

Find the arc length of the curve on the given interval. x=t2+3,y=8t3+9,1t0x = t ^ { 2 } + 3 , y = 8 t ^ { 3 } + 9 , - 1 \leq t \leq 0

(Multiple Choice)
4.9/5
(36)

Use the result, "the set of parametric equations for the circle is x=h+rcosθ,y=k+rsinθ"x = h + r \cos \theta , y = k + r \sin \theta " to find a set of parametric equations for the circle with a center (2,6)( - 2,6 ) and radius 5 .

(Multiple Choice)
4.8/5
(27)

Find the length of the curve r=6 over the interval 0θ2πr = 6 \text { over the interval } 0 \leq \theta \leq 2 \pi \text {. }

(Multiple Choice)
4.8/5
(34)

Identify the graph for the polar equation r=22+3sinθr = \frac { 2 } { 2 + 3 \sin \theta }

(Multiple Choice)
4.9/5
(38)

 Find dydx\text { Find } \frac { d y } { d x } x= y=6-t

(Multiple Choice)
4.9/5
(39)

 Find the area of the interior of r=12sinθ\text { Find the area of the interior of } r = 12 \sin \theta \text {. }

(Multiple Choice)
4.9/5
(33)
Showing 41 - 60 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)