Exam 15: Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the area of the surface over the given region. Use a computer algebra system to verify your results. The part of the cone, r(u,v)=6ucosvi^+6usinvj^+uk^\overrightarrow { \mathbf { r } } ( u , v ) = 6 u \cos v \hat { \mathbf { i } } + 6 u \sin v \hat { \mathbf { j } } + u \hat { \mathbf { k } } where 0u20 \leq u \leq 2 and 0v2π0 \leq v \leq 2 \pi .

(Multiple Choice)
4.9/5
(44)

Determine whether the vector field is conservative. If it is, find a potential function for the vector field. F(x,y)=10x9yi^+x10j^\overrightarrow { \mathbf { F } } ( x , y ) = 10 x ^ { 9 } y \hat { \mathbf { i } } + x ^ { 10 } { \hat { j } }

(Multiple Choice)
4.9/5
(41)

Let S be the oriented upwards. Use a computer surface z=100x2y2,z0 z=100-x^{2}-y^{2}, z \geq 0 algebra system to find the rate of mass flow of a fluid of density ρ\rho through SS if the velocity field is given by F(x,y,z)=0.5zk\mathbf { F } ( x , y , z ) = 0.5 z k .

(Multiple Choice)
4.8/5
(28)

Write a set of parametric equations for the surface of revolution obtained by revolving the graph of the function about the given axis. y=x7,0x21x-axis y = \frac { x } { 7 } , 0 \leq x \leq 21 \quad x \text {-axis }

(Multiple Choice)
4.8/5
(39)

Find the conservative vector field for the potential function h(x,y,z)=16xyln(x+y)h ( x , y , z ) = 16 x y \ln ( x + y ) by finding its gradient.

(Multiple Choice)
4.8/5
(38)

Identify the surface by eliminating the parameters from the vector-valued function r(u,v)=6cosvcosui+6cosvsinuj+3sinvk\mathbf { r } ( u , v ) = 6 \cos v \cos u \mathbf { i } + 6 \cos v \sin u \mathbf { j } + 3 \sin v \mathbf { k }

(Multiple Choice)
4.8/5
(40)

Find the rectangular equation for the surface by eliminating the parameters from the vector-valued function r(u,v)=2cosvcosui+2cosvsinuj+3sinvk\mathbf { r } ( u , v ) = 2 \cos v \cos u \mathbf { i } + 2 \cos v \sin u \mathbf { j } + 3 \sin v \mathbf { k } and sketch the graph.

(Multiple Choice)
4.8/5
(40)

Find the divergence of the vector field. F(x,y,z)=10x6i^xy5j^\overrightarrow { \mathbf { F } } ( x , y , z ) = 10 x ^ { 6 } \hat { \mathbf { i } } - x y ^ { 5 } \hat { \mathbf { j } }

(Multiple Choice)
4.9/5
(39)
Showing 101 - 108 of 108
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)