Exam 15: Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the area of the surface over the given region. Use a computer algebra system to verify your results. The sphere, r(u,v)=10sinucosvi^+10sinusinvj^+10cosuk^,0uπ,0v2π\overrightarrow { \mathbf { r } } ( u , v ) = 10 \sin u \cos v \hat { \mathbf { i } } + 10 \sin u \sin v \hat { \mathbf { j } } + 10 \cos u \hat { \mathbf { k } } , \quad 0 \leq u \leq \pi , 0 \leq v \leq 2 \pi

(Multiple Choice)
4.9/5
(28)

Find the flux of F\vec { F } over the closed surface let N\vec{N} be the outward unit normal vector of the surface). F(x,y,z)=49xyi^+z2j~+yzk~\overrightarrow { \mathbf { F } } ( x , y , z ) = 49 x y \hat { \mathbf { i } } + z ^ { 2 } \tilde { \mathbf { j } } + y z \tilde { \mathbf { k } } S:S : cube bounded by x=0,x=2,y=0,y=2,z=0,z=2x = 0 , x = 2 , y = 0 , y = 2 , z = 0 , z = 2

(Multiple Choice)
4.9/5
(42)

Find the area of the surface of revolution r(u,v)=11sinucosvi+11uj+11sinusinvk\mathbf { r } ( u , v ) = 11 \sin u \cos v \mathbf { i } + 11 u \mathbf { j } + 11 \sin u \sin v \mathbf { k } , where 0uπ0 \leq u \leq \pi and 0v2π0 \leq v \leq 2 \pi .

(Multiple Choice)
4.8/5
(40)

The motion of a liquid in a cylindrical container of radius 1 is described by the velocity field F(x,y,z)=8zi+2yk\mathbf { F } ( x , y , z ) = - 8 z \mathbf { i } + 2 y \mathbf { k } . Find S(curlF)NdS\iint _ { S } ( \operatorname { curl } \mathbf { F } ) \cdot \mathbf { N } d S , where SS is the upper surface of the cylindrical container.

(Multiple Choice)
4.8/5
(41)

A stone weighing 2 pounds is attached to the end of a four-foot string and is whirled horizontally with one end held fixed. It makes 1 revolution per second. Find the work done by the Force F that keeps the stone moving in a circular path. [Hint: Use Force = (mass)(centripetal Acceleration).] Round your answer to two decimal places, if required.

(Multiple Choice)
4.9/5
(43)

Verify Green's Theorem by evaluating both integrals c14y2dx+14x2dy=R(NxMy)A\int _ { c } 14 y ^ { 2 } d x + 14 x ^ { 2 } d y = \int _ { R } \int \left( \frac { \partial N } { \partial x } - \frac { \partial M } { \partial y } \right) \partial A for the path CC defined as the boundary of the region lying between the graphs of y=xy = x and y=x2y = x ^ { 2 } .

(Multiple Choice)
4.9/5
(36)

Use Green's Theorem to evaluate the line integral Cexcos(13y)dx13exsin(13y)dy\int _ { C } e ^ { x } \cos ( 13 y ) d x - 13 e ^ { x } \sin ( 13 y ) d y where CC is x2+y2=a2x ^ { 2 } + y ^ { 2 } = a ^ { 2 }

(Multiple Choice)
4.9/5
(31)

 Let F(x,y,z)=xzi+zyj+2z2k and let S be the surface bounded by \text { Let } \mathbf { F } ( x , y , z ) = x z \mathbf { i } + z y \mathbf { j } + 2 z ^ { 2 } \mathbf { k } \text { and let } S \text { be the surface bounded by } z=17x2y2z = 17 - x ^ { 2 } - y ^ { 2 } and z=0z = 0 . Verify the Divergence Theorem by evaluating SFNds\iint_{S} \mathbf{F} \cdot \mathbf{N} d s as a surface integral and as a triple integral. Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(44)

 Find div(F×G)\text { Find } \operatorname { div } ( \overrightarrow { \mathrm { F } } \times \overrightarrow { \mathrm { G } } ) \text {. } (x,y,z)=8+9x+10y (x,y,z)=8x-8y+8z

(Multiple Choice)
4.7/5
(38)

Find div(curlF)=(×F) for the vector field given by \operatorname { div } ( \operatorname { curl } \mathbf { F } ) = \nabla \cdot ( \nabla \times \mathbf { F } ) \text { for the vector field given by } F(x,y,z)=x8zi2xzj+yzk\mathbf { F } ( x , y , z ) = x ^ { 8 } z \mathbf { i } - 2 x z \mathbf { j } + y z \mathbf { k }

(Multiple Choice)
4.7/5
(42)

Evaluate Sf(x,y)dS \iint_{S} f(x, y) d S , where f(x,y)=x+y f(x, y)=x+y and S S is given by r(u,v)=8cosui+8sinuj+vk,0uπ2,0v4\mathbf { r } ( u , v ) = 8 \cos u \mathbf { i } + 8 \sin u \mathbf { j } + v \mathbf { k } , 0 \leq \mathrm { u } \leq \frac { \pi } { 2 } , 0 \leq v \leq 4

(Multiple Choice)
4.9/5
(41)

 Find the flux of F(x,y,z)=xi+yj2zk through \text { Find the flux of } \mathbf { F } ( x , y , z ) = x \mathbf { i } + y \mathbf { j } - 2 z \mathbf { k } \text { through } S:z=121x2y2,SFNdSS : z = \sqrt { 121 - x ^ { 2 } - y ^ { 2 } } , \iint _ { S } \mathbf { F } \cdot \mathbf { N } d S where N\mathbf { N } is the upward unit normal vector to SS .

(Multiple Choice)
5.0/5
(46)

Find the value of the line integral cFdr, where F(x,y)=ey(zi+xzj+xk) and \int_{c} \mathbf { F } \text {. } d \mathbf { r } \text {, where } \mathbf { F } ( x , y ) = e ^ { y } ( z \mathbf { i } + x z \mathbf { j } + x \mathbf { k } ) \text { and } r(t)=3costi+3sintj+8k,0tπ\mathbf { r } ( t ) = 3 \cos t \mathbf { i } + 3 \sin t \mathbf { j } + 8 \mathbf { k } , 0 \leq t \leq \pi (Hint: If F\mathbf { F } is conservative, the integration may be easier on an alternate path.)

(Multiple Choice)
4.9/5
(35)

 Find the value of the line integral \text { Find the value of the line integral }Cy3dx+3xy2dy\int_{C} y^{3} d x+3 x y^{2} d y (Hint: If F(x,y)=y3i+3xy2j\mathbf { F } ( x , y ) = y ^ { 3 } \mathbf { i } + 3 x y ^ { 2 } \mathbf { j } is conservative, the integration may be easier on an alternate path.) \text { Find the value of the line integral }\int_{C} y^{3} d x+3 x y^{2} d y   (Hint: If  \mathbf { F } ( x , y ) = y ^ { 3 } \mathbf { i } + 3 x y ^ { 2 } \mathbf { j }  is conservative, the integration may be easier on an alternate path.)

(Multiple Choice)
5.0/5
(34)

 Let F(x,y,z)=(2xy)i(2yz)j+zk and let S be the surface bounded by the \text { Let } \mathbf { F } ( x , y , z ) = ( 2 x - y ) \mathbf { i } - ( 2 y - z ) \mathbf { j } + z \mathbf { k } \text { and let } S \text { be the surface bounded by the } plane 2x+4y+2z=122 x + 4 y + 2 z = 12 and the coordinates planes. Verify the Divergence Theorem by evaluating SFNds\iint_{S} \mathbf{F} \cdot \mathbf{N} d s as a surface integral and as a triple integral. \text { Let } \mathbf { F } ( x , y , z ) = ( 2 x - y ) \mathbf { i } - ( 2 y - z ) \mathbf { j } + z \mathbf { k } \text { and let } S \text { be the surface bounded by the }  plane  2 x + 4 y + 2 z = 12  and the coordinates planes. Verify the Divergence Theorem by evaluating  \iint_{S} \mathbf{F} \cdot \mathbf{N} d s  as a surface integral and as a triple integral.

(Multiple Choice)
4.9/5
(39)

 Find the value of the line integral CFdr, where F(x,y)=4i+2zj+2yk and \text { Find the value of the line integral } \int _ { C } \mathbf { F } \cdot d \mathbf { r } \text {, where } \mathbf { F } ( x , y ) = 4 \mathbf { i } + 2 z \mathbf { j } + 2 y \mathbf { k } \text { and }r(t)=costi+sintj+t2k,0tπ\mathbf { r } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } + t ^ { 2 } \mathbf { k } , 0 \leq t \leq \pi (Hint: If F\mathbf { F } is conservative, the integration may be easier on an alternate path.)

(Multiple Choice)
4.9/5
(45)

Find the flux F\vec { F } of through SS , SFNdS\iint _ { S } \vec { F } \cdot \vec { N } d S , where N\vec { N } is the upward unit normal vector to S. F(x,y,z)=2zi^8j^+yk^\overrightarrow { \mathbf { F } } ( x , y , z ) = 2 z \hat { \mathbf { i } } - 8 \hat { \mathbf { j } } + y \hat { \mathbf { k } } S:x+y+z=9S : x + y + z = 9 , first octant

(Multiple Choice)
4.8/5
(41)

Evaluate the line integral sinxsinydxcosxcosydy using the Fundamental \int \sin x \sin y d x - \cos x \cos y d y \text { using the Fundamental } Theorem of Line Integrals, where CC is the line segment from (0,π)( 0 , - \pi ) to (3π2,π2)\left( \frac { 3 \pi } { 2 } , \frac { \pi } { 2 } \right) .

(Multiple Choice)
4.9/5
(41)

The surface of the dome on a new museum is given by r=(u,v)=24sinucosvi+24sinusinvj+24cosuk\mathbf { r } = ( u , v ) = 24 \sin u \cos v \mathbf { i } + 24 \sin u \sin v \mathbf { j } + 24 \cos u \mathbf { k } , where 0uπ30 \leq u \leq \frac { \pi } { 3 } and 0v2π0 \leq v \leq 2 \pi and r\mathbf { r } is in meters. Find the surface area of the dome.

(Multiple Choice)
4.8/5
(36)

Find the curl for the vector field at the given point. F(x,y,z)=7xyzi^+7yj^+7zk^,(7,8,7)\overrightarrow { \mathbf { F } } ( x , y , z ) = 7 x y z \hat { \mathbf { i } } + 7 y \hat { \mathbf { j } } + 7 z \hat { \mathbf { k } } , \quad ( 7,8,7 )

(Multiple Choice)
4.8/5
(34)
Showing 21 - 40 of 108
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)