Exam 15: Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the area of the surface given by r(u,v)=9uivj+vk, where \mathbf { r } ( u , v ) = 9 u \mathbf { i } - v \mathbf { j } + v \mathbf { k } \text {, where } 0u20 \leq u \leq 2 and 0v40 \leq v \leq 4

(Multiple Choice)
4.8/5
(37)

 Let F(x,y,z)=2xi^2yj^+z2k^ and let S be the cylinder x2+y2=4,0z3\text { Let } F ( x , y , z ) = 2 x \hat { \mathbf { i } } - 2 y \hat { \mathbf { j } } + z ^ { 2 } \hat { \mathbf { k } } \text { and let } S \text { be the cylinder } x ^ { 2 } + y ^ { 2 } = 4,0 \leq z \leq 3 \text {. } Verify the Divergence Theorem by evaluating SFNds\iint _ { S } \mathbf { F } \cdot \mathbf { N } d s as a surface integral and as a triple integral. \text { Let } F ( x , y , z ) = 2 x \hat { \mathbf { i } } - 2 y \hat { \mathbf { j } } + z ^ { 2 } \hat { \mathbf { k } } \text { and let } S \text { be the cylinder } x ^ { 2 } + y ^ { 2 } = 4,0 \leq z \leq 3 \text {. }   Verify the Divergence Theorem by evaluating  \iint _ { S } \mathbf { F } \cdot \mathbf { N } d s  as a surface integral and as a triple integral.

(Multiple Choice)
4.7/5
(40)

 Let F(x,y,z)=xyi+zj+(x+y)k and let S be the surface bounded by the planes \text { Let } \mathbf { F } ( x , y , z ) = x y \mathbf { i } + z \mathbf { j } + ( x + y ) \mathbf { k } \text { and let } S \text { be the surface bounded by the planes } y=4y = 4 and z=4xz = 4 - x and the coordinate planes. Verify the Divergence Theorem by evaluating SFNds\iint_{S} \mathbf{F} \cdot \mathbf{N} d s as a surface integral and as a triple integral. Round your answer to two decimal places wherever applicable. \text { Let } \mathbf { F } ( x , y , z ) = x y \mathbf { i } + z \mathbf { j } + ( x + y ) \mathbf { k } \text { and let } S \text { be the surface bounded by the planes }   y = 4  and  z = 4 - x  and the coordinate planes. Verify the Divergence Theorem by evaluating  \iint_{S} \mathbf{F} \cdot \mathbf{N} d s   as a surface integral and as a triple integral. Round your answer to two decimal places wherever applicable.

(Multiple Choice)
4.8/5
(44)

Use Stokes's Theorem to evaluate F(x,y,z)=xyzi+yj+zk,x2+y249\mathbf { F } ( x , y , z ) = x y z \mathbf { i } + y \mathbf { j } + z \mathbf { k } , x ^ { 2 } + y ^ { 2 } \leq 49 and SS is the first-octant portion of z=x2z = x ^ { 2 } over x2+y2=49x ^ { 2 } + y ^ { 2 } = 49 Use a computer algebra system to verify your result.

(Multiple Choice)
4.7/5
(44)

Find the divergence of the vector field F given by F(x,y,z)=sin(7x)i+cos(6y)j+z3k^\mathbf { F } ( x , y , z ) = \sin ( 7 x ) \mathbf { i } + \cos ( 6 y ) \mathbf { j } + z ^ { 3 } \hat { \mathbf { k } }

(Multiple Choice)
4.8/5
(37)

Find an equation of the tangent plane to the surface represented by the vector-valued function at the given point. r(u,v)=(2u+v)i^+(uv)j^+vk^,(4,4,4)\overrightarrow { \mathbf { r } } ( u , v ) = ( 2 u + v ) \hat { \mathbf { i } } + ( u - v ) \hat { \mathbf { j } } + v \hat { \mathbf { k } } , ( 4 , - 4,4 )

(Multiple Choice)
4.8/5
(36)

Find the value of the line integral cFdr \int_{c} \mathbf{F} \cdot d \mathbf{r} , where F(x,y)=12xyi+6x2j \mathbf{F}(x, y)=12 x y \mathbf{i}+6 x^{2} \mathbf{j} and r(t)=8ti+8t2j,0t1\mathbf { r } ( t ) = 8 t \mathbf { i } + 8 t ^ { 2 } \mathbf { j } , 0 \leq t \leq 1 (Hint: If F\mathbf { F } is conservative, the integration may be easier on an alternate path.)

(Multiple Choice)
4.8/5
(39)

Evaluate S4xydS\iint _ { S } 4 x y d S , where SS is z=5xyz = 5 - x - y , first octant.

(Multiple Choice)
4.8/5
(24)

Use the Divergence Theorem to evaluate SFNds \iint_{S} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathrm{N}} d s Verify your answer by evaluating the integral as a triple integral. F(x,y,z)=2xi^2yj^+z2k^F ( x , y , z ) = 2 x \hat { \mathbf { i } } - 2 y \hat { \mathbf { j } } + z ^ { 2 } \hat { \mathbf { k } } SS : cube bounded by the planes x=0,x=2,y=0,y=2,z=0,z=2x = 0 , x = 2 , y = 0 , y = 2 , z = 0 , z = 2

(Multiple Choice)
4.9/5
(39)

Find the gradient vector for the scalar function. (That is, find the conservative vector field for the potential function.) f(x,y)=10x2+8xy+3y2f ( x , y ) = 10 x ^ { 2 } + 8 x y + 3 y ^ { 2 }

(Multiple Choice)
4.9/5
(36)

Sketch the vector field F(x,y)=xi+3yj\mathbf { F } ( x , y ) = x \mathbf { i } + 3 y \mathbf { j }

(Multiple Choice)
4.9/5
(39)

Find the flux F of through S,SFNdS, where N\overrightarrow { \mathrm { F } } \text { of through } S , \iint _ { S } \overrightarrow { \mathrm { F } } \cdot \overrightarrow { \mathrm { N } } d S \text {, where } \overrightarrow { \mathrm { N }} is the upward unit normal vector to S. F(x,y,z)=xi^+yj^+zk^\overrightarrow { \mathrm { F } } ( x , y , z ) = x \hat { \mathbf { i } } + y \hat { \mathbf { j } } + z \hat { \mathbf { k } } S:z=64x2y2,z0S : z = 64 - x ^ { 2 } - y ^ { 2 } , z \geq 0

(Multiple Choice)
4.9/5
(36)

Evaluate Sf(x,y,z)dS \iint_{S} f(x, y, z) d S , Where f(x,y,z)=x2+y2+z2f(x,y,z)= {x^2}+{y^2}+{z^2} and S is given by z=x+y,x2+y2100 z=x+y, x^{2}+y^{2} \leq 100

(Multiple Choice)
4.8/5
(37)

Find the work done by the force field F in moving an object from P to O\overrightarrow { \mathbf { F } } \text { in moving an object from } P \text { to } O \text {. } F(x,y)=18x5y5i^+(15x6y41)j^,P(0,0),Q(3,2)\overrightarrow { \mathbf { F } } ( x , y ) = 18 x ^ { 5 } y ^ { 5 } \hat { \mathbf { i } } + \left( 15 x ^ { 6 } y ^ { 4 } - 1 \right) \hat { \mathbf { j } } , P ( 0,0 ) , Q ( 3,2 )

(Multiple Choice)
4.7/5
(34)

Green's Theorem to evaluate the integral C11xydx+(x+y)dy\int _ { C } 11 x y d x + ( x + y ) d y for the path CC : boundary of the region lying between the graphs of y=0y = 0 and y=121x2y = 121 - x ^ { 2 } .

(Multiple Choice)
4.8/5
(40)

Find the value of the line integral cFdr \int_{c} \mathbf{F} \cdot d \mathbf{r} on the closed path consisting of line segments from (0,2)( 0,2 ) to (0,0)( 0,0 ) , from (0,0)( 0,0 ) to (2,0)( 2,0 ) , and then from (2,0)( 2,0 ) to (0,2)( 0,2 ) , where F(x,y)=3ye3xyi+3xe3xyj\mathbf { F } ( x , y ) = 3 y e ^ { 3 x y } \mathbf { i } + 3 x e ^ { 3 x y } \mathbf { j } . (Hint: If F\mathbf { F } is conservative, the integration may be easier on an alternate path.)

(Multiple Choice)
4.9/5
(36)

Write a set of parametric equations for the surface of revolution obtained by revolving the graph of the function y=x37,0x4y = x ^ { \frac { 3 } { 7 } } , 0 \leq x \leq 4 about the xx -axis.

(Multiple Choice)
4.8/5
(37)

Use a computer algebra system and the result "The area of a plane region bounded by the simple closed path CC given in polar coordinates is A=12Cr2dθA = \frac { 1 } { 2 } \int _ { C } r ^ { 2 } d \theta ^ { \prime \prime } to find the area of the region bounded by the graphs of the polar equation r=102cosθr = \frac { 10 } { 2 - \cos \theta } . Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(44)

Use Green's Theorem to evaluate the line integral C(ex2/2y)dx+(ey2/2+x)dy\int _ { C } \left( e ^ { - x ^ { 2 } / 2 } - y \right) d x + \left( e ^ { - y ^ { 2 } / 2 } + x \right) d y where CC is the boundary of the region lying between the graphs of the circle x=8cosθ,y=8sinθx = 8 \cos \theta , y = 8 \sin \theta and the ellipse x=6cosθ,y=4sinθx = 6 \cos \theta , y = 4 \sin \theta .

(Multiple Choice)
4.8/5
(31)

Use a computer algebra system to evaluate sx24xydS \iint_{s} x^{2}-4 x y d S where S S is z=4x2y2 z=4-x^{2}-y^{2} , 0x2,0y20 \leq x \leq 2,0 \leq y \leq 2 . Round your answer to two decimal places.

(Multiple Choice)
4.7/5
(36)
Showing 61 - 80 of 108
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)