Exam 15: Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Evaluate s(x8y+z)dS \iint_{s}(x-8 y+z) d S , where S:z=16x,0x16,0y16S : z = 16 - x , 0 \leq x \leq 16,0 \leq y \leq 16

(Multiple Choice)
4.8/5
(38)

Determine whether the vector field is conservative. If it is, find a potential function for the vector field. F(x,y,z)=7x6y8z9i^+8x7y7z9j^+9x7y8z8k^\overrightarrow { \mathbf { F } } ( x , y , z ) = 7 x ^ { 6 } y ^ { 8 } z ^ { 9 } \hat { \mathbf { i } } + 8 x ^ { 7 } y ^ { 7 } z ^ { 9 } \hat { \mathbf { j } } + 9 x ^ { 7 } y ^ { 8 } z ^ { 8 } \hat { \mathbf { k } }

(Multiple Choice)
4.9/5
(31)

 Let F(x,y,z)=arctanxyi+lnx2+y2j+k and let C be the triangle \text { Let } \mathbf { F } ( x , y , z ) = \arctan \frac { x } { y } \mathbf { i } + \ln \sqrt { x ^ { 2 } + y ^ { 2 } } \mathbf { j } + \mathbf { k } \text { and let } C \text { be the triangle } with vertices of (0,0,0),(6,6,6)( 0,0,0 ) , ( 6,6,6 ) , and (0,0,12)( 0,0,12 ) , oriented counterclockwise. Use Stokes's Theorem to evaluate cFdr\int _ { c } \mathbf { F } \cdot d \mathbf { r } .

(Multiple Choice)
4.9/5
(40)

 Let F(x,y,z)=z2i+2xj+y2k and let S be the graph of \text { Let } \mathbf { F } ( x , y , z ) = z ^ { 2 } \mathbf { i } + 2 x \mathbf { j } + y ^ { 2 } \mathbf { k } \text { and let } S \text { be the graph of } z=1x2y2,z0z = 1 - x ^ { 2 } - y ^ { 2 } , z \geq 0 ,oriented counterclockwise. Use Stokes's Theorem to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } .

(Multiple Choice)
4.8/5
(37)

Find the curl of the vector field F(x,y,z)=(8yz)i^+xyzj^+4ezk^\overrightarrow { \mathbf { F } } ( x , y , z ) = ( 8 y - z ) \hat { \mathbf { i } } + x y z \hat { j } + 4 e ^ { z } \hat { \mathbf { k } }

(Multiple Choice)
4.7/5
(34)

A tractor engine has a steel component with a circular base modeled by the vector-valued function r(t)=6costi+6sintj\mathbf { r } ( t ) = 6 \cos t \mathbf { i } + 6 \sin t \mathbf { j } . Its height is given by z=1+y2z = 1 + y ^ { 2 } . (All measurements of the component are given in centimeters.) Find the lateral surface area of the component. Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(31)

Determine whether the vector field is conservative. If it is, find a potential function for the vector field. F(x,y)=3yxi^x3y3j^\overrightarrow { \mathrm { F } } ( x , y ) = \frac { 3 y } { x } \hat { \mathbf { i } } - \frac { x ^ { 3 } } { y ^ { 3 } } \hat { \mathbf { j } }

(Multiple Choice)
4.8/5
(41)

Use a computer algebra system to evaluate sxydS \iint_{s} x y d S where S S is z=12xy,0x4,0y4z = \frac { 1 } { 2 } x y , 0 \leq x \leq 4,0 \leq y \leq 4 . Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(32)

Evaluate the line integral along the given path. (4x5y)dsC:r(t)=3ti^+2tj^,0y6\int ( 4 x - 5 y ) d s \quad C : \overrightarrow { \mathbf { r } } ( t ) = 3 t \hat { \mathbf { i } } + 2 t \hat { \mathbf { j } } , \quad 0 \leq y \leq 6

(Multiple Choice)
4.7/5
(42)

Find the moments of inertia for a wire that lies along r(t)=7costi~+7sintj~,0t2π\overrightarrow { \mathbf { r } } ( t ) = 7 \cos t \tilde { \mathbf { i } } + 7 \sin t \tilde { \mathbf { j } } , 0 \leq t \leq 2 \pi , with density ρ(x,y)=1\rho ( x , y ) = 1

(Multiple Choice)
4.8/5
(39)

For the vector field F(x,y)=Ax5y5i+5x6y4j, find the value of A for which the \mathbf { F } ( x , y ) = A x ^ { 5 } y ^ { 5 } \mathbf { i } + 5 x ^ { 6 } y ^ { 4 } \mathbf { j } \text {, find the value of } A \text { for which the } field is conservative.

(Multiple Choice)
4.9/5
(39)

Find a vector-valued function for the hyperboloid x2+y2z2=121x ^ { 2 } + y ^ { 2 } - z ^ { 2 } = 121

(Multiple Choice)
4.8/5
(40)

Use Divergence Theorem to evaluate SFNds\iint_{S} \mathbf{F} \cdot \mathbf{N} d s and find the outward flux of F(x,y,z)=x2i+y2j+z2k\mathbf { F } ( x , y , z ) = x ^ { 2 } \mathbf { i } + y ^ { 2 } \mathbf { j } + z ^ { 2 } \mathbf { k } through the surface SS of the solid bounded by the planes x=0,x=12,y=0,y=12,z=0x = 0 , x = 12 , y = 0 , y = 12 , z = 0 and z=12z = 12 .

(Multiple Choice)
4.9/5
(40)

Use a computer algebra system and the result "The area of a plane region bounded by the simple closed path C given in polar coordinates is A=12Cr2dθ" to find the area of the region A = \frac { 1 } { 2 } \int _ { C } r ^ { 2 } d \theta " \text { to find the area of the region } bounded by the graphs of the polar equation r=15(1cosθ)r = 15 ( 1 - \cos \theta ) .

(Multiple Choice)
4.7/5
(37)

Find a piecewise smooth parametrization of the path C given in the following graph. Find a piecewise smooth parametrization of the path C given in the following graph.

(Multiple Choice)
5.0/5
(36)

Find the rectangular equation for the surface by eliminating parameters from the vector-valued function. Identify the surface. r(u,v)=ui^+vj^+v10k^\overrightarrow { \mathbf { r } } ( u , v ) = u \hat { \mathbf { i } } + v \hat { \mathbf { j } } + \frac { v } { 10 } \hat { \mathbf { k } }

(Multiple Choice)
5.0/5
(44)

Find the divergence of the vector field at the given point. F(x,y,z)=8xyzi^+8yj^+8xk^,(8,9,8)\overrightarrow { \mathbf { F } } ( x , y , z ) = 8 x y z \hat { \mathbf { i } } + 8 y \hat { \mathbf { j } } + 8 x \hat { \mathbf { k } } , ( 8,9,8 )

(Multiple Choice)
4.7/5
(31)

Set up and evaluate a line integral to find the area of the region R bounded by the graph of x2+y2=25x ^ { 2 } + y ^ { 2 } = 25

(Multiple Choice)
4.7/5
(32)

Use Green's Theorem to evaluate the integral C(yx)dx+(2xy)dy where C is \int _ { C } ( y - x ) d x + ( 2 x - y ) d y \text { where } C \text { is } the boundary of the region lying inside the rectangle bounded by x=8,x=8,y=4,y=4x = - 8 , x = 8 , y = - 4 , y = 4 , and outside the square bounded by x=1,x=1,y=1x = - 1 , x = 1 , y = - 1 , and y=1y = 1 .

(Multiple Choice)
4.8/5
(38)

Find a piecewise smooth parametrization of the path C given in the following graph. Find a piecewise smooth parametrization of the path C given in the following graph.

(Multiple Choice)
5.0/5
(40)
Showing 81 - 100 of 108
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)