Exam 15: Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Evaluate Sf(x,y)dS\iint_{S} f ( x , y ) d S , where f(x,y)=y+3f ( x , y ) = y + 3 S:r(u,v)=ui+vj+v10k,0u1,0v10S : \mathbf { r } ( u , v ) = u \mathbf { i } + v \mathbf { j } + \frac { v } { 10 } \mathbf { k } , 0 \leq \mathrm { u } \leq 1,0 \leq v \leq 10

(Multiple Choice)
4.8/5
(44)

 Evaluate S(x,y,z)dS, where f(x,y,z)=x2+y2+z2 and S is given by \text { Evaluate } \iint _ { S } ( x , y , z ) d S \text {, where } f ( x , y , z ) = \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \text { and } S \text { is given by } z=x2+y2,x2+y2121z = \sqrt { x ^ { 2 } + y ^ { 2 } } , x ^ { 2 } + y ^ { 2 } \leq 121

(Multiple Choice)
4.8/5
(30)

Evaluate the line integral using the Fundamental Theorem of Line Integrals. Use a computer algebra system to verify your results. 2xC(x2+y2)2dx+2y(x2+y2)2dy\int \frac { 2 x } { C \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } } d x + \frac { 2 y } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } } d y CC : circle (x2)2+(y10)2=9( x - 2 ) ^ { 2 } + ( y - 10 ) ^ { 2 } = 9 clockwise from (5,10)( 5,10 ) to (1,10)( - 1,10 )

(Multiple Choice)
4.7/5
(38)

Find the rectangular equation for the surface by eliminating the parameters from the vector-valued function r(u,v)=9cosvcosui+9cosvsinuj+6sinvk\mathbf { r } ( u , v ) = 9 \cos v \cos u \mathbf { i } + 9 \cos v \sin u \mathbf { j } + 6 \sin v \mathbf { k } .

(Multiple Choice)
4.7/5
(33)

Calculate the line integral along Fdr for F(x,y)=3yi+5x2j and C is any path \int \mathbf { F } \cdot d \mathbf { r } \text { for } \mathbf { F } ( x , y ) = 3 y \mathbf { i } + 5 x ^ { 2 } \mathbf { j } \text { and } C \text { is any path } starting at the point (3,5)( 3,5 ) and ending at (8,0)( 8,0 ) .

(Multiple Choice)
4.9/5
(33)

Evaluate the integral c(4xy)dx+(x+6y)dy \int_{c}(4 x-y) d x+(x+6 y) d y along the path C C , defined as y y -axis from y=0y = 0 to y=4y = 4 .

(Multiple Choice)
4.9/5
(33)

Match the following vector-valued function with its graph. r(u,v)=ucosvi+usinvj+uk\mathbf { r } ( u , v ) = u \cos v \mathbf { i } + u \sin v \mathbf { j } + u \mathbf { k }

(Multiple Choice)
4.7/5
(46)

Evaluate the integral along the path C defined as y=9x2 from (0,3) to (3,0)y = 9 - x ^ { 2 } \text { from } ( 0,3 ) \text { to } ( 3,0 ) \text {. }

(Multiple Choice)
4.8/5
(38)

Find the gradient vector for the scalar function. (That is, find the conservative vector field for the potential function.) f(x,y)=sin4xcos6yf ( x , y ) = \sin 4 x \cos 6 y

(Multiple Choice)
4.9/5
(40)

Use Green's Theorem to evaluate the integral C(yx)dx+(2yy)dy for the \int _ { C } ( y - x ) d x + ( 2 y - y ) d y \text { for the } path CC defined as x=6cosθ,y=7sinθx = 6 \cos \theta , y = 7 \sin \theta .

(Multiple Choice)
4.7/5
(37)

Evaluate S(x5y+z)dS\iint _ { S } ( x - 5 y + z ) d S , where SS is z=4,x2+y24z = 4 , x ^ { 2 } + y ^ { 2 } \leq 4 .

(Multiple Choice)
4.8/5
(36)

Green's Theorem to evaluate the integral C(x2y2)dx+10xydy\int _ { C } \left( x ^ { 2 } - y ^ { 2 } \right) d x + 10 x y d y for the path C:x2+y2=64C : x ^ { 2 } + y ^ { 2 } = 64 .

(Multiple Choice)
4.9/5
(31)

Find the value of the line integral c(4x3y+1)dx(3x+y5)dy\int_{c}(4 x-3 y+1) d x-(3 x+y-5) d y . (Hint: If F(x,y)=(4x3y+1)i(3x+y5)j\mathbf { F } ( x , y ) = ( 4 x - 3 y + 1 ) \mathbf { i } - ( 3 x + y - 5 ) \mathbf { j } is conservative, the integration may be easier on an alternate path.)  Find the value of the line integral  \int_{c}(4 x-3 y+1) d x-(3 x+y-5) d y   . (Hint: If  \mathbf { F } ( x , y ) = ( 4 x - 3 y + 1 ) \mathbf { i } - ( 3 x + y - 5 ) \mathbf { j }  is conservative, the integration may be easier on an alternate path.)

(Multiple Choice)
4.9/5
(44)

Match the following vector -valued function with its graph. r(u,v)=ui+vj+uvk\mathbf { r } ( u , v ) = u \mathbf { i } + v \mathbf { j } + u v \mathbf { k }

(Multiple Choice)
4.8/5
(30)

Find a vector-valued function whose graph is the plane x+y+z=4x + y + z = 4 \text {. }

(Multiple Choice)
4.8/5
(37)

Use Stokes's Theorem to evaluate CFdr\int _ { C } \mathbf { F } \cdot d r where F(x,y,z)=yzi+(23y)j+(x2+y2)k,x2+y2400\mathbf { F } ( x , y , z ) = y z \mathbf { i } + ( 2 - 3 y ) \mathbf { j } + \left( x ^ { 2 } + y ^ { 2 } \right) \mathbf { k } , x ^ { 2 } + y ^ { 2 } \leq 400 and SS is the first-octant portion of x2+y2400x ^ { 2 } + y ^ { 2 } \leq 400 over x2+y2=400x ^ { 2 } + y ^ { 2 } = 400 . Use a computer algebra system to verify your result.

(Multiple Choice)
4.8/5
(35)

Use a computer algebra system and the result "The centroid of the region having area AA bounded by the simple closed path CC is xˉ=12ACx2dy,yˉ=12ACy2dx\bar { x } = \frac { 1 } { 2 A } \int _ { C } x ^ { 2 } d y , \bar { y } = - \frac { 1 } { 2 A } \int _ { C } y ^ { 2 } d x ^ { \prime \prime } to find the centroid of the region bounded by the graphs of y=196x2y = \sqrt { 196 - x ^ { 2 } } and y=0y = 0 .

(Multiple Choice)
4.7/5
(38)

Find the maximum value of C1y3dx+(225xx3)dy, where C is any closed curve \int _ { C _ { 1 } } y ^ { 3 } d x + \left( 225 x - x ^ { 3 } \right) d y , \text { where } C \text { is any closed curve } in the xy-plane, oriented counterclockwise.

(Multiple Choice)
4.9/5
(29)

 Use Stokes’s Theorem to evaluate CFdr where F(x,y,z)=x2i+z2jxyzk\text { Use Stokes's Theorem to evaluate } \int _ { C } \mathbf { F } \cdot d r \text { where } \mathbf { F } ( x , y , z ) = x ^ { 2 } \mathbf { i } + z ^ { 2 } \mathbf { j } - x y z \mathbf { k } and SS is z=25x2y2z = \sqrt { 25 - x ^ { 2 } - y ^ { 2 } } .Use a computer algebra system to verify your result.

(Multiple Choice)
4.9/5
(30)

The motion of a liquid in a cylindrical container of radius 1 is described by the velocity field F(x,y,z)=5i+6j7k\mathbf { F } ( x , y , z ) = 5 \mathbf { i } + 6 \mathbf { j } - 7 \mathbf { k } . Find S(curlF)NdS\iint _ { S } ( \operatorname { curl } \mathbf { F } ) \cdot \mathbf { N } d S , where SS is the upper surface of the cylindrical container.

(Multiple Choice)
4.8/5
(45)
Showing 41 - 60 of 108
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)