Exam 13: Functions of Several Variables

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Let f(x,y)=3x22y3f ( x , y ) = \sqrt { 3 x ^ { 2 } - 2 y ^ { 3 } } . Then fxx(x,y)f _ { x x } ( x , y ) is

(Multiple Choice)
4.9/5
(36)

Let w=tan(xyz)w = \tan ( x y z ) . Then the differential dwd ^ { w } is

(Multiple Choice)
4.8/5
(35)

Let z=exyz = e ^ { x y } , where x = t cos t and y = t sin t.When t = 0, dzdt\frac { d z } { d t } is

(Multiple Choice)
4.8/5
(29)

Let f(x,y)=xyf ( x , y ) = \frac { x } { y } . Then f(x+Δx,y)f(x,y)f ( x + \Delta x , y ) - f ( x , y ) is

(Multiple Choice)
4.8/5
(41)

Let f(x,y)=5x2ysin(xy)f ( x , y ) = 5 ^ { x ^ { 2 } } y \sin ( x - y ) . Then fy(x,y)f _ { y } ( x , y ) is

(Multiple Choice)
4.7/5
(33)

Let f(x,y)={sin(xy)xyxy1x=yf ( x , y ) = \left\{ \begin{array} { c c } \frac { \sin ( x - y ) } { x - y } & x \neq y \\1 & x = y\end{array} \right. . Then f is

(Multiple Choice)
4.9/5
(32)

Let z=xyz = x ^ { y } . Then the differential dzd ^ { z } is

(Multiple Choice)
4.8/5
(35)

Let f(x,y)=xln(y)4xy+xf ( x , y ) = x \ln ( y ) - 4 x y + x . Then fy(x,y)f _ { y } ( x , y ) is

(Multiple Choice)
4.9/5
(37)

Let z3xy+2yz+y33xy=0z ^ { 3 } - x y + 2 y z + y ^ { 3 } - 3 x y = 0 . If Z is a function of x and y, then zy(1,1,1)z _ { y } ( 1,1,1 ) is

(Multiple Choice)
4.9/5
(41)

Let z=ln(x2+y2)z = \ln \left( x ^ { 2 } + y ^ { 2 } \right) , where x=etx = e ^ { t } and y=ety = e ^ { - t } .When is

(Multiple Choice)
4.8/5
(28)

Let f(x,y)=sin(xy+y2)f ( x , y ) = \sin \left( x y + y ^ { 2 } \right) . Then fxx(x,y)f _ { x x } ( x , y ) is

(Multiple Choice)
4.8/5
(45)

Let f(x,y)=ln(x2+y2)f ( x , y ) = \ln \left( \sqrt { x ^ { 2 } + y ^ { 2 } } \right) . Then fyy(x,y)f _ { y y } ( x , y ) is

(Multiple Choice)
4.8/5
(38)

Let f(x,y,z)={1x2+z2(x,z)(0,0)0(x,z)=(0,0)f ( x , y , z ) = \left\{ \begin{array} { c c } \frac { 1 } { x ^ { 2 } + z ^ { 2 } } & ( x , z ) \neq ( 0,0 ) \\0 & ( x , z ) = ( 0,0 )\end{array} \right. . Then f is

(Multiple Choice)
4.9/5
(45)

Let f(x,y)=x2y2f ( x , y ) = x ^ { 2 } - y ^ { 2 } . Then the level curve for z = 3 is

(Multiple Choice)
4.7/5
(31)

Let z=x2+y2z = x ^ { 2 } + y ^ { 2 } . Then the change of z from (1, 3) to (1.1, 3.2) approximated by dzd ^ { z } is

(Multiple Choice)
4.8/5
(33)

Let xey+yexxy=0x e ^ { y } + y e ^ { x } - x y = 0 . If y is a function of x, then dydx\frac { d y } { d x } is

(Multiple Choice)
4.8/5
(38)

Let x2yy2x+xy5=0x ^ { 2 } y - y ^ { 2 } x + x y - 5 = 0 . If y is a function of x, then dydx\frac { d y } { d x } is

(Multiple Choice)
4.9/5
(28)

Let z=ln(xy)z = \ln \left( \frac { x } { y } \right) . Then the differential dzd ^ { z } is

(Multiple Choice)
4.9/5
(30)

Let f(x,y)=sin(xy+y2)f ( x , y ) = \sin \left( x y + y ^ { 2 } \right) . Then fyy(x,y)f _ {y y } ( x , y ) is

(Multiple Choice)
4.9/5
(31)

Let z=x2+2xy+y2z = x ^ { 2 } + 2 x y + y ^ { 2 } , where x = t sin t and y = t cos t. When t = 0, dzdt\frac { d z } { d t } is

(Multiple Choice)
4.8/5
(28)
Showing 61 - 80 of 100
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)